Alfonso Aja Kindelan, Leovardo Mata Mata, J. Godoy
{"title":"利用差分神经网络分析和预测辉瑞2018-2020年的股东回报","authors":"Alfonso Aja Kindelan, Leovardo Mata Mata, J. Godoy","doi":"10.36105/THEANAHUACJOUR.2019V19N1.01","DOIUrl":null,"url":null,"abstract":"En este trabajo se utiliza una red neuronal diferencial (DNN, por sus siglas en inglés) para proyectar los rendimientos accionarios de Pfizer en el período 2018-2020. El modelo emplea datos trimestrales, al cierre del período, del precio de la acción de la empresa (P), ventas netas (VN), activos totales (AT) y cuentaspor cobrar (CC). Los resultados señalan una bondad de ajuste superior de las DNN frente a los métodos convencionales, pues el error en el pronóstico out sample es inferior al 5 %. Este hallazgo contribuye con evidencia empírica para afirmar que las DNN ofrecen mayor robustez predictiva de los rendimientos accionarios de Pfizer.","PeriodicalId":197904,"journal":{"name":"The Anáhuac Journal","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Análisis y proyección de los rendimientos accionarios de Pfizer, en el período 2018-2020, mediante redes neuronales diferenciales\",\"authors\":\"Alfonso Aja Kindelan, Leovardo Mata Mata, J. Godoy\",\"doi\":\"10.36105/THEANAHUACJOUR.2019V19N1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En este trabajo se utiliza una red neuronal diferencial (DNN, por sus siglas en inglés) para proyectar los rendimientos accionarios de Pfizer en el período 2018-2020. El modelo emplea datos trimestrales, al cierre del período, del precio de la acción de la empresa (P), ventas netas (VN), activos totales (AT) y cuentaspor cobrar (CC). Los resultados señalan una bondad de ajuste superior de las DNN frente a los métodos convencionales, pues el error en el pronóstico out sample es inferior al 5 %. Este hallazgo contribuye con evidencia empírica para afirmar que las DNN ofrecen mayor robustez predictiva de los rendimientos accionarios de Pfizer.\",\"PeriodicalId\":197904,\"journal\":{\"name\":\"The Anáhuac Journal\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Anáhuac Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36105/THEANAHUACJOUR.2019V19N1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Anáhuac Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36105/THEANAHUACJOUR.2019V19N1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Análisis y proyección de los rendimientos accionarios de Pfizer, en el período 2018-2020, mediante redes neuronales diferenciales
En este trabajo se utiliza una red neuronal diferencial (DNN, por sus siglas en inglés) para proyectar los rendimientos accionarios de Pfizer en el período 2018-2020. El modelo emplea datos trimestrales, al cierre del período, del precio de la acción de la empresa (P), ventas netas (VN), activos totales (AT) y cuentaspor cobrar (CC). Los resultados señalan una bondad de ajuste superior de las DNN frente a los métodos convencionales, pues el error en el pronóstico out sample es inferior al 5 %. Este hallazgo contribuye con evidencia empírica para afirmar que las DNN ofrecen mayor robustez predictiva de los rendimientos accionarios de Pfizer.