用于基因表达数据分类的随机集合斜决策残桩

Phuoc-Hai Huynh, Van Hoa Nguyen, Thanh-Nghi Do
{"title":"用于基因表达数据分类的随机集合斜决策残桩","authors":"Phuoc-Hai Huynh, Van Hoa Nguyen, Thanh-Nghi Do","doi":"10.1145/3287921.3287987","DOIUrl":null,"url":null,"abstract":"Cancer classification using microarray gene expression data is known to contain keys for addressing the fundamental problems relating to cancer diagnosis and drug discovery. However, classification gene expression data is a difficult task because these data are characterized by high dimensional space and small sample size. We investigate random ensemble oblique decision stumps (RODS) based on linear support vector machine (SVM) that is suitable for classifying very-high-dimensional microarray gene expression data. Our classification algorithms (called Bag-RODS and Boost-RODS) learn multiple oblique decision stumps in the way of bagging and boosting to form an ensemble of classifiers more accurate than single model. Numerical test results on 50 very-high-dimensional microarray gene expression datasets from Kent Ridge Biomedical repository and Array Expression repositories show that our proposed algorithms are more accurate than the-state-of-the-art classification models, including k nearest neighbors (kNN), SVM, decision trees and ensembles of decision trees like random forests, bagging and adaboost.","PeriodicalId":448008,"journal":{"name":"Proceedings of the 9th International Symposium on Information and Communication Technology","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Random ensemble oblique decision stumps for classifying gene expression data\",\"authors\":\"Phuoc-Hai Huynh, Van Hoa Nguyen, Thanh-Nghi Do\",\"doi\":\"10.1145/3287921.3287987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer classification using microarray gene expression data is known to contain keys for addressing the fundamental problems relating to cancer diagnosis and drug discovery. However, classification gene expression data is a difficult task because these data are characterized by high dimensional space and small sample size. We investigate random ensemble oblique decision stumps (RODS) based on linear support vector machine (SVM) that is suitable for classifying very-high-dimensional microarray gene expression data. Our classification algorithms (called Bag-RODS and Boost-RODS) learn multiple oblique decision stumps in the way of bagging and boosting to form an ensemble of classifiers more accurate than single model. Numerical test results on 50 very-high-dimensional microarray gene expression datasets from Kent Ridge Biomedical repository and Array Expression repositories show that our proposed algorithms are more accurate than the-state-of-the-art classification models, including k nearest neighbors (kNN), SVM, decision trees and ensembles of decision trees like random forests, bagging and adaboost.\",\"PeriodicalId\":448008,\"journal\":{\"name\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Symposium on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3287921.3287987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3287921.3287987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

利用微阵列基因表达数据进行癌症分类是解决与癌症诊断和药物发现相关的基本问题的关键。然而,由于这些数据具有高维空间和小样本量的特点,对基因表达数据进行分类是一项困难的任务。我们研究了基于线性支持向量机(SVM)的随机集成斜决策树桩(RODS),该方法适用于对高维微阵列基因表达数据进行分类。我们的分类算法(称为Bag-RODS和Boost-RODS)以bagging和boosting的方式学习多个倾斜决策树桩,以形成比单个模型更准确的分类器集合。来自肯特岭生物医学知识库和阵列表达知识库的50个高维微阵列基因表达数据集的数值测试结果表明,我们提出的算法比最先进的分类模型更准确,包括k近邻(kNN),支持向量机,决策树和决策树的集合,如随机森林,bagging和adaboost。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random ensemble oblique decision stumps for classifying gene expression data
Cancer classification using microarray gene expression data is known to contain keys for addressing the fundamental problems relating to cancer diagnosis and drug discovery. However, classification gene expression data is a difficult task because these data are characterized by high dimensional space and small sample size. We investigate random ensemble oblique decision stumps (RODS) based on linear support vector machine (SVM) that is suitable for classifying very-high-dimensional microarray gene expression data. Our classification algorithms (called Bag-RODS and Boost-RODS) learn multiple oblique decision stumps in the way of bagging and boosting to form an ensemble of classifiers more accurate than single model. Numerical test results on 50 very-high-dimensional microarray gene expression datasets from Kent Ridge Biomedical repository and Array Expression repositories show that our proposed algorithms are more accurate than the-state-of-the-art classification models, including k nearest neighbors (kNN), SVM, decision trees and ensembles of decision trees like random forests, bagging and adaboost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fully Residual Convolutional Neural Networks for Aerial Image Segmentation Techniques for Improving Performance of the CPR-Based Approach Mobile multi-scale vehicle detector and its application in traffic surveillance Intelligent Assistants in Higher-Education Environments: The FIT-EBot, a Chatbot for Administrative and Learning Support Discord Discovery in Streaming Time Series based on an Improved HOT SAX Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1