使用评级预测在线评论情绪的可行性

A. Azman, Eissa Alshari, P. S. Sulaiman, M. T. Abdullah, M. Alksher, R. A. Kadir
{"title":"使用评级预测在线评论情绪的可行性","authors":"A. Azman, Eissa Alshari, P. S. Sulaiman, M. T. Abdullah, M. Alksher, R. A. Kadir","doi":"10.1109/AMS.2017.14","DOIUrl":null,"url":null,"abstract":"More consumers depend on online recommendation for products before making purchase decision. Comments or ratings given by other online users are used as recommendation and help consumers to make informed decision. Giving rating is a more convenient way to express sentiment toward a product while comments provide details and allow for subjective judgment. This paper investigates the problem of using rating alone to infer the actual sentiment polarity of the raters towards a product. In particular, the experiment attempts to discover whether the lower ratings (1 or 2 in 5-point scale) are more associated to negative polarity while the higher ratings (4 or 5 in 5-point scale) are more associated to positive polarity as universally assumed. A lexical based sentiment analysis approach is used to determine sentiment polarity of each textual comment. The results showed that higher ratings could indicate positive sentiment but it is not the case for the lower ratings in representing negative sentiment.","PeriodicalId":219494,"journal":{"name":"2017 Asia Modelling Symposium (AMS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feasibility of Using Rating to Predict Sentiment for Online Reviews\",\"authors\":\"A. Azman, Eissa Alshari, P. S. Sulaiman, M. T. Abdullah, M. Alksher, R. A. Kadir\",\"doi\":\"10.1109/AMS.2017.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More consumers depend on online recommendation for products before making purchase decision. Comments or ratings given by other online users are used as recommendation and help consumers to make informed decision. Giving rating is a more convenient way to express sentiment toward a product while comments provide details and allow for subjective judgment. This paper investigates the problem of using rating alone to infer the actual sentiment polarity of the raters towards a product. In particular, the experiment attempts to discover whether the lower ratings (1 or 2 in 5-point scale) are more associated to negative polarity while the higher ratings (4 or 5 in 5-point scale) are more associated to positive polarity as universally assumed. A lexical based sentiment analysis approach is used to determine sentiment polarity of each textual comment. The results showed that higher ratings could indicate positive sentiment but it is not the case for the lower ratings in representing negative sentiment.\",\"PeriodicalId\":219494,\"journal\":{\"name\":\"2017 Asia Modelling Symposium (AMS)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia Modelling Symposium (AMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2017.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia Modelling Symposium (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2017.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在做出购买决定之前,更多的消费者依赖于网上的产品推荐。其他在线用户给出的评论或评分被用作推荐,帮助消费者做出明智的决定。评分是表达对产品情感的一种更方便的方式,而评论提供了细节并允许主观判断。本文研究了单独使用评级来推断评级者对产品的实际情绪极性的问题。特别是,实验试图发现较低的评级(5分制中的1或2)是否与负极性更多相关,而较高的评级(5分制中的4或5)是否与普遍认为的正极性更多相关。采用基于词法的情感分析方法确定文本评论的情感极性。结果显示,分数越高,表示的是积极情绪,但分数越低,表示的是消极情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility of Using Rating to Predict Sentiment for Online Reviews
More consumers depend on online recommendation for products before making purchase decision. Comments or ratings given by other online users are used as recommendation and help consumers to make informed decision. Giving rating is a more convenient way to express sentiment toward a product while comments provide details and allow for subjective judgment. This paper investigates the problem of using rating alone to infer the actual sentiment polarity of the raters towards a product. In particular, the experiment attempts to discover whether the lower ratings (1 or 2 in 5-point scale) are more associated to negative polarity while the higher ratings (4 or 5 in 5-point scale) are more associated to positive polarity as universally assumed. A lexical based sentiment analysis approach is used to determine sentiment polarity of each textual comment. The results showed that higher ratings could indicate positive sentiment but it is not the case for the lower ratings in representing negative sentiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer Simulation of an Arbitrary Acoustical Field in Rooms Battery-Free and Energy-Effective RFID Sensor Tag for Health Monitoring in Smart Grid Assessment of Spinal Cord Injury via Sparse Modeling of Somatosensory Evoked Potential Signals Performance of Frequency Estimation Techniques with Phase Noise in mm-Wave Based 5G Systems Frontier Exploration Technique for 3D Autonomous SLAM Using K-Means Based Divisive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1