Ruba Akbar, M. S. Shifa, A. Saleem, A. Zaib, Faseeh Ur Raheem, M. Khaliq
{"title":"用铋取代调整镨钴锌铁氧体的性能","authors":"Ruba Akbar, M. S. Shifa, A. Saleem, A. Zaib, Faseeh Ur Raheem, M. Khaliq","doi":"10.52131/jmps.2022.0301.0021","DOIUrl":null,"url":null,"abstract":"This work carried out the study of Co0.5Zn0.5Bi0.4-xPr0.1Fe1.5+xO4 spinel ferrite series (x = 0,0.1, 0.2, 0.3 and 0.4) prepared via micro-emulsion route. Effects on structural, electrical, optical and morphology properties is studied by varying Bi concentration (x = 0,0.1, 0.2, 0.3 and 0.4). The characterization techniques employed included X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR). XRD results confirmed the spinel structure having lattice parameter around 8.39 Å and particle size decreased from 30 nm to 41 nm with increasing Bi concentration. Fourier transform infrared spectroscopy (FTIR) revealed fingerprints of metal oxides band at 408-577 cm-1. Optical properties were studied UV-visible spectroscopy and Eg was found to vary from 2.83 eV to 2.59 eV. The scanning electron microscope (SEM) described the morphology of the samples. We then examine the results and the material's characteristics, as well as the areas in which it can be used.","PeriodicalId":293021,"journal":{"name":"Journal of Materials and Physical Sciences","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tuning the Properties of Praseodymium Cobalt-Zinc Ferrites by Substitution of Bismuth\",\"authors\":\"Ruba Akbar, M. S. Shifa, A. Saleem, A. Zaib, Faseeh Ur Raheem, M. Khaliq\",\"doi\":\"10.52131/jmps.2022.0301.0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work carried out the study of Co0.5Zn0.5Bi0.4-xPr0.1Fe1.5+xO4 spinel ferrite series (x = 0,0.1, 0.2, 0.3 and 0.4) prepared via micro-emulsion route. Effects on structural, electrical, optical and morphology properties is studied by varying Bi concentration (x = 0,0.1, 0.2, 0.3 and 0.4). The characterization techniques employed included X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR). XRD results confirmed the spinel structure having lattice parameter around 8.39 Å and particle size decreased from 30 nm to 41 nm with increasing Bi concentration. Fourier transform infrared spectroscopy (FTIR) revealed fingerprints of metal oxides band at 408-577 cm-1. Optical properties were studied UV-visible spectroscopy and Eg was found to vary from 2.83 eV to 2.59 eV. The scanning electron microscope (SEM) described the morphology of the samples. We then examine the results and the material's characteristics, as well as the areas in which it can be used.\",\"PeriodicalId\":293021,\"journal\":{\"name\":\"Journal of Materials and Physical Sciences\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52131/jmps.2022.0301.0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52131/jmps.2022.0301.0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tuning the Properties of Praseodymium Cobalt-Zinc Ferrites by Substitution of Bismuth
This work carried out the study of Co0.5Zn0.5Bi0.4-xPr0.1Fe1.5+xO4 spinel ferrite series (x = 0,0.1, 0.2, 0.3 and 0.4) prepared via micro-emulsion route. Effects on structural, electrical, optical and morphology properties is studied by varying Bi concentration (x = 0,0.1, 0.2, 0.3 and 0.4). The characterization techniques employed included X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR). XRD results confirmed the spinel structure having lattice parameter around 8.39 Å and particle size decreased from 30 nm to 41 nm with increasing Bi concentration. Fourier transform infrared spectroscopy (FTIR) revealed fingerprints of metal oxides band at 408-577 cm-1. Optical properties were studied UV-visible spectroscopy and Eg was found to vary from 2.83 eV to 2.59 eV. The scanning electron microscope (SEM) described the morphology of the samples. We then examine the results and the material's characteristics, as well as the areas in which it can be used.