参数优化对软件预测模型的影响

Asad Ali, C. Gravino
{"title":"参数优化对软件预测模型的影响","authors":"Asad Ali, C. Gravino","doi":"10.1109/SEAA56994.2022.00041","DOIUrl":null,"url":null,"abstract":"Several studies have raised concerns about the performance of estimation techniques if employed with default parameters provided by specific development toolkits, e.g., Weka. In this paper, we evaluate the impact of parameter optimization with nine different estimation techniques in the Software Development Effort Estimation (SDEE) and Software Fault Prediction (SFP) domains to provide more generic findings of the impact of parameter optimization. To this aim, we employ three datasets from the domain of SDEE (China, Maxwell, Nasa) and three different regression-based datasets from the SFP domain (Ant, Xalan, Xerces). Regarding parameter optimization, we consider four optimization algorithms from different families: Grid Search and Random Search, Simulated Annealing, and Bayesian Optimization. The estimation techniques are: Support Vector Machine, Random Forest, Classification and Regression Tree, Neural Networks, Averaged Neural Networks, k-Nearest Neighbor, Partial Least Square, MultiLayer Perceptron, and Gradient Boosting Machine. Results reveal that, with both SDEE and SFP datasets, seven out of nine estimation techniques require optimization/configuration of at least one parameter. In majority of the cases, the parameters of the employed estimation techniques are sensitive to the optimization of specific types of data. Moreover, not all the parameters need to be optimized as some of them are not sensitive to optimization.","PeriodicalId":269970,"journal":{"name":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Parameters Optimization in Software Prediction Models\",\"authors\":\"Asad Ali, C. Gravino\",\"doi\":\"10.1109/SEAA56994.2022.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several studies have raised concerns about the performance of estimation techniques if employed with default parameters provided by specific development toolkits, e.g., Weka. In this paper, we evaluate the impact of parameter optimization with nine different estimation techniques in the Software Development Effort Estimation (SDEE) and Software Fault Prediction (SFP) domains to provide more generic findings of the impact of parameter optimization. To this aim, we employ three datasets from the domain of SDEE (China, Maxwell, Nasa) and three different regression-based datasets from the SFP domain (Ant, Xalan, Xerces). Regarding parameter optimization, we consider four optimization algorithms from different families: Grid Search and Random Search, Simulated Annealing, and Bayesian Optimization. The estimation techniques are: Support Vector Machine, Random Forest, Classification and Regression Tree, Neural Networks, Averaged Neural Networks, k-Nearest Neighbor, Partial Least Square, MultiLayer Perceptron, and Gradient Boosting Machine. Results reveal that, with both SDEE and SFP datasets, seven out of nine estimation techniques require optimization/configuration of at least one parameter. In majority of the cases, the parameters of the employed estimation techniques are sensitive to the optimization of specific types of data. Moreover, not all the parameters need to be optimized as some of them are not sensitive to optimization.\",\"PeriodicalId\":269970,\"journal\":{\"name\":\"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA56994.2022.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA56994.2022.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一些研究已经提出了对使用特定开发工具包(例如Weka)提供的默认参数的评估技术的性能的关注。在本文中,我们使用软件开发工作量估计(SDEE)和软件故障预测(SFP)领域中的九种不同的估计技术来评估参数优化的影响,以提供参数优化影响的更多通用发现。为此,我们使用了来自SDEE领域的三个数据集(中国,麦克斯韦,美国宇航局)和来自SFP领域的三个不同的基于回归的数据集(Ant, Xalan, Xerces)。在参数优化方面,我们考虑了来自不同家族的四种优化算法:网格搜索和随机搜索、模拟退火和贝叶斯优化。估计技术有:支持向量机、随机森林、分类与回归树、神经网络、平均神经网络、k近邻、偏最小二乘、多层感知机和梯度增强机。结果表明,对于SDEE和SFP数据集,9种估计技术中有7种需要优化/配置至少一个参数。在大多数情况下,所采用的估计技术的参数对特定类型数据的优化很敏感。此外,并不是所有的参数都需要优化,因为有些参数对优化并不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Impact of Parameters Optimization in Software Prediction Models
Several studies have raised concerns about the performance of estimation techniques if employed with default parameters provided by specific development toolkits, e.g., Weka. In this paper, we evaluate the impact of parameter optimization with nine different estimation techniques in the Software Development Effort Estimation (SDEE) and Software Fault Prediction (SFP) domains to provide more generic findings of the impact of parameter optimization. To this aim, we employ three datasets from the domain of SDEE (China, Maxwell, Nasa) and three different regression-based datasets from the SFP domain (Ant, Xalan, Xerces). Regarding parameter optimization, we consider four optimization algorithms from different families: Grid Search and Random Search, Simulated Annealing, and Bayesian Optimization. The estimation techniques are: Support Vector Machine, Random Forest, Classification and Regression Tree, Neural Networks, Averaged Neural Networks, k-Nearest Neighbor, Partial Least Square, MultiLayer Perceptron, and Gradient Boosting Machine. Results reveal that, with both SDEE and SFP datasets, seven out of nine estimation techniques require optimization/configuration of at least one parameter. In majority of the cases, the parameters of the employed estimation techniques are sensitive to the optimization of specific types of data. Moreover, not all the parameters need to be optimized as some of them are not sensitive to optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Service Classification through Machine Learning: Aiding in the Efficient Identification of Reusable Assets in Cloud Application Development Handling Environmental Uncertainty in Design Time Access Control Analysis How are software datasets constructed in Empirical Software Engineering studies? A systematic mapping study Microservices smell detection through dynamic analysis Towards Secure Agile Software Development Process: A Practice-Based Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1