平面介电泳系统的二维机器人控制

Mohamed Kharboutly Alexandre Melis, A. Bolopion, N. Chaillet, Michaël Gauthier
{"title":"平面介电泳系统的二维机器人控制","authors":"Mohamed Kharboutly Alexandre Melis, A. Bolopion, N. Chaillet, Michaël Gauthier","doi":"10.1109/3M-NANO.2012.6472975","DOIUrl":null,"url":null,"abstract":"Nanosciences have recently proposed a lot of proofs of concept of innovative nanocomponents and especially nanosensors. Going from the current proofs of concept on this scale to reliable industrial systems requires the emergence of a new generation of manufacturing methods able to move, position and sort micro-nano-components. We propose to develop `No Weight Robots-NWR' that use noncontact transmission of movement (e.g. dielectrophoresis, magnetophoresis) to manipulate micro-nano-objects which could enable simultaneous high throughput and high precision. This paper focuses on developing a 2D robotic control of the trajectory of a micro-object manipulated by a dielectrophoresis system. A 2D dynamic model is used to establish an open loop control law by a numerical inversion. Exploiting this control law, a high speed trajectory tracking (10 Hz) and high precision positioning can be achieved. Several simulated and experimental results are shown to evaluate this control strategy and discuss its performance.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"2D robotic control of a planar dielectrophoresis-based system\",\"authors\":\"Mohamed Kharboutly Alexandre Melis, A. Bolopion, N. Chaillet, Michaël Gauthier\",\"doi\":\"10.1109/3M-NANO.2012.6472975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanosciences have recently proposed a lot of proofs of concept of innovative nanocomponents and especially nanosensors. Going from the current proofs of concept on this scale to reliable industrial systems requires the emergence of a new generation of manufacturing methods able to move, position and sort micro-nano-components. We propose to develop `No Weight Robots-NWR' that use noncontact transmission of movement (e.g. dielectrophoresis, magnetophoresis) to manipulate micro-nano-objects which could enable simultaneous high throughput and high precision. This paper focuses on developing a 2D robotic control of the trajectory of a micro-object manipulated by a dielectrophoresis system. A 2D dynamic model is used to establish an open loop control law by a numerical inversion. Exploiting this control law, a high speed trajectory tracking (10 Hz) and high precision positioning can be achieved. Several simulated and experimental results are shown to evaluate this control strategy and discuss its performance.\",\"PeriodicalId\":134364,\"journal\":{\"name\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2012.6472975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,纳米科学提出了许多创新纳米元件,特别是纳米传感器概念的证明。从目前这种规模的概念证明到可靠的工业系统,需要新一代能够移动、定位和分类微纳米组件的制造方法的出现。我们建议开发“无重量机器人- nwr”,它使用非接触运动传输(如介电电泳,磁泳)来操纵微纳米物体,可以同时实现高通量和高精度。本文主要研究了一种二维机器人控制的微物体的运动轨迹。采用二维动力学模型,通过数值反演建立开环控制律。利用该控制律,可以实现高速(10hz)轨迹跟踪和高精度定位。仿真和实验结果对该控制策略进行了评价,并对其性能进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2D robotic control of a planar dielectrophoresis-based system
Nanosciences have recently proposed a lot of proofs of concept of innovative nanocomponents and especially nanosensors. Going from the current proofs of concept on this scale to reliable industrial systems requires the emergence of a new generation of manufacturing methods able to move, position and sort micro-nano-components. We propose to develop `No Weight Robots-NWR' that use noncontact transmission of movement (e.g. dielectrophoresis, magnetophoresis) to manipulate micro-nano-objects which could enable simultaneous high throughput and high precision. This paper focuses on developing a 2D robotic control of the trajectory of a micro-object manipulated by a dielectrophoresis system. A 2D dynamic model is used to establish an open loop control law by a numerical inversion. Exploiting this control law, a high speed trajectory tracking (10 Hz) and high precision positioning can be achieved. Several simulated and experimental results are shown to evaluate this control strategy and discuss its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking control of an electrostatic torsional micromirror beyond the pull-in limit with enhanced performance Numerical investigation of size and chirality effects on mechanical properties of graphene nanoribbons Recognition of living abnormal cells based on an optical microscope Determination of two-dimensional phase shifts in three-beam laser interference patterns The bonding of LiNbO3-silicon via BCB material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1