Mohamed Kharboutly Alexandre Melis, A. Bolopion, N. Chaillet, Michaël Gauthier
{"title":"平面介电泳系统的二维机器人控制","authors":"Mohamed Kharboutly Alexandre Melis, A. Bolopion, N. Chaillet, Michaël Gauthier","doi":"10.1109/3M-NANO.2012.6472975","DOIUrl":null,"url":null,"abstract":"Nanosciences have recently proposed a lot of proofs of concept of innovative nanocomponents and especially nanosensors. Going from the current proofs of concept on this scale to reliable industrial systems requires the emergence of a new generation of manufacturing methods able to move, position and sort micro-nano-components. We propose to develop `No Weight Robots-NWR' that use noncontact transmission of movement (e.g. dielectrophoresis, magnetophoresis) to manipulate micro-nano-objects which could enable simultaneous high throughput and high precision. This paper focuses on developing a 2D robotic control of the trajectory of a micro-object manipulated by a dielectrophoresis system. A 2D dynamic model is used to establish an open loop control law by a numerical inversion. Exploiting this control law, a high speed trajectory tracking (10 Hz) and high precision positioning can be achieved. Several simulated and experimental results are shown to evaluate this control strategy and discuss its performance.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"2D robotic control of a planar dielectrophoresis-based system\",\"authors\":\"Mohamed Kharboutly Alexandre Melis, A. Bolopion, N. Chaillet, Michaël Gauthier\",\"doi\":\"10.1109/3M-NANO.2012.6472975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanosciences have recently proposed a lot of proofs of concept of innovative nanocomponents and especially nanosensors. Going from the current proofs of concept on this scale to reliable industrial systems requires the emergence of a new generation of manufacturing methods able to move, position and sort micro-nano-components. We propose to develop `No Weight Robots-NWR' that use noncontact transmission of movement (e.g. dielectrophoresis, magnetophoresis) to manipulate micro-nano-objects which could enable simultaneous high throughput and high precision. This paper focuses on developing a 2D robotic control of the trajectory of a micro-object manipulated by a dielectrophoresis system. A 2D dynamic model is used to establish an open loop control law by a numerical inversion. Exploiting this control law, a high speed trajectory tracking (10 Hz) and high precision positioning can be achieved. Several simulated and experimental results are shown to evaluate this control strategy and discuss its performance.\",\"PeriodicalId\":134364,\"journal\":{\"name\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2012.6472975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2D robotic control of a planar dielectrophoresis-based system
Nanosciences have recently proposed a lot of proofs of concept of innovative nanocomponents and especially nanosensors. Going from the current proofs of concept on this scale to reliable industrial systems requires the emergence of a new generation of manufacturing methods able to move, position and sort micro-nano-components. We propose to develop `No Weight Robots-NWR' that use noncontact transmission of movement (e.g. dielectrophoresis, magnetophoresis) to manipulate micro-nano-objects which could enable simultaneous high throughput and high precision. This paper focuses on developing a 2D robotic control of the trajectory of a micro-object manipulated by a dielectrophoresis system. A 2D dynamic model is used to establish an open loop control law by a numerical inversion. Exploiting this control law, a high speed trajectory tracking (10 Hz) and high precision positioning can be achieved. Several simulated and experimental results are shown to evaluate this control strategy and discuss its performance.