评估波段选择和预训练权重对基于语义分割的卫星图像难民住所提取的影响

Yunya Gao, Getachew Workineh Gella, Nianhua Liu
{"title":"评估波段选择和预训练权重对基于语义分割的卫星图像难民住所提取的影响","authors":"Yunya Gao, Getachew Workineh Gella, Nianhua Liu","doi":"10.5194/agile-giss-3-36-2022","DOIUrl":null,"url":null,"abstract":"Abstract. This research assessed the influences of four band combinations and three types of pretrained weights on the performance of semantic segmentation in extracting refugee dwelling footprints of the Kule refugee camp in Ethiopia during a dry season and a wet season from very high spatial resolution imagery. We chose a classical network, U-Net with VGG16 as a backbone, for all segmentation experiments. The selected band combinations include 1) RGBN (Red, Green, Blue, and Near Infrared), 2) RGB, 3) RGN, and 4) RNB. The three types of pretrained weights are 1) randomly initialized weights, 2) pretrained weights from ImageNet, and 3) weights pretrained on data from the Bria refugee camp in the Central African Republic). The results turn out that three-band combinations outperform RGBN bands across all types of weights and seasons. Replacing the B or G band with the N band can improve the performance in extracting dwellings during the wet season but cannot bring improvement to the dry season in general. Pretrained weights from ImageNet achieve the best performance. Weights pretrained on data from the Bria refugee camp produced the lowest IoU and Recall values.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing the Influences of Band Selection and Pretrained Weights on Semantic-Segmentation-Based Refugee Dwelling Extraction from Satellite Imagery\",\"authors\":\"Yunya Gao, Getachew Workineh Gella, Nianhua Liu\",\"doi\":\"10.5194/agile-giss-3-36-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. This research assessed the influences of four band combinations and three types of pretrained weights on the performance of semantic segmentation in extracting refugee dwelling footprints of the Kule refugee camp in Ethiopia during a dry season and a wet season from very high spatial resolution imagery. We chose a classical network, U-Net with VGG16 as a backbone, for all segmentation experiments. The selected band combinations include 1) RGBN (Red, Green, Blue, and Near Infrared), 2) RGB, 3) RGN, and 4) RNB. The three types of pretrained weights are 1) randomly initialized weights, 2) pretrained weights from ImageNet, and 3) weights pretrained on data from the Bria refugee camp in the Central African Republic). The results turn out that three-band combinations outperform RGBN bands across all types of weights and seasons. Replacing the B or G band with the N band can improve the performance in extracting dwellings during the wet season but cannot bring improvement to the dry season in general. Pretrained weights from ImageNet achieve the best performance. Weights pretrained on data from the Bria refugee camp produced the lowest IoU and Recall values.\\n\",\"PeriodicalId\":116168,\"journal\":{\"name\":\"AGILE: GIScience Series\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGILE: GIScience Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/agile-giss-3-36-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-3-36-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要。本研究评估了四种波段组合和三种预训练权重对语义分割在埃塞俄比亚库勒难民营非常高空间分辨率图像中提取干季和湿季难民居住足迹性能的影响。我们选择了一个经典的网络,以VGG16为骨干的U-Net,用于所有的分割实验。可选择的波段组合包括:1)RGBN(红、绿、蓝、近红外)、2)RGB、3)RGN、4)RNB。三种类型的预训练权值分别是:1)随机初始化权值,2)ImageNet预训练权值,3)中非共和国Bria难民营数据预训练权值。结果表明,三波段组合在所有类型的权重和季节中都优于RGBN波段。用N波段代替B波段或G波段可以改善湿季提取民居的性能,但一般不能改善旱季提取民居的性能。来自ImageNet的预训练权值达到最佳性能。对来自布里亚难民营的数据进行预训练的权重产生了最低的欠条和召回值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing the Influences of Band Selection and Pretrained Weights on Semantic-Segmentation-Based Refugee Dwelling Extraction from Satellite Imagery
Abstract. This research assessed the influences of four band combinations and three types of pretrained weights on the performance of semantic segmentation in extracting refugee dwelling footprints of the Kule refugee camp in Ethiopia during a dry season and a wet season from very high spatial resolution imagery. We chose a classical network, U-Net with VGG16 as a backbone, for all segmentation experiments. The selected band combinations include 1) RGBN (Red, Green, Blue, and Near Infrared), 2) RGB, 3) RGN, and 4) RNB. The three types of pretrained weights are 1) randomly initialized weights, 2) pretrained weights from ImageNet, and 3) weights pretrained on data from the Bria refugee camp in the Central African Republic). The results turn out that three-band combinations outperform RGBN bands across all types of weights and seasons. Replacing the B or G band with the N band can improve the performance in extracting dwellings during the wet season but cannot bring improvement to the dry season in general. Pretrained weights from ImageNet achieve the best performance. Weights pretrained on data from the Bria refugee camp produced the lowest IoU and Recall values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is it safe to be attractive? Disentangling the influence of streetscape features on the perceived safety and attractiveness of city streets Satellite parking: a new method for measuring parking occupancy Semantic complexity of geographic questions - A comparison in terms of conceptual transformations of answers Development of an inclusive Mapping Application in a Co-Design Process Visualizing of the below-ground water network infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1