融合cam加权特征和时间信息的鲁棒闭环检测

Yao Li, S. Zhong, Tongwei Ren, Y. Liu
{"title":"融合cam加权特征和时间信息的鲁棒闭环检测","authors":"Yao Li, S. Zhong, Tongwei Ren, Y. Liu","doi":"10.1145/3444685.3446309","DOIUrl":null,"url":null,"abstract":"As a key component in simultaneous localization and mapping (SLAM) system, loop closure detection (LCD) eliminates the accumulated errors by recognizing previously visited places. In recent years, deep learning methods have been proved effective in LCD. However, most of the existing methods do not make good use of the useful information provided by monocular images, which tends to limit their performance in challenging dynamic scenarios with partial occlusion by moving objects. To this end, we propose a novel workflow, which is able to combine multiple information provided by images. We first introduce semantic information into LCD by developing a local-aware Class Activation Maps (CAMs) weighting method for extracting features, which can reduce the adverse effects of moving objects. Compared with previous methods based on semantic segmentation, our method has the advantage of not requiring additional models or other complex operations. In addition, we propose two effective temporal constraint strategies, which utilize the relationship of image sequences to improve the detection performance. Moreover, we propose to use the keypoint matching strategy as the final detector to further refuse false positives. Experiments on four publicly available datasets indicate that our approach can achieve higher accuracy and better robustness than the state-of-the-art methods.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"2005 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusing CAMs-weighted features and temporal information for robust loop closure detection\",\"authors\":\"Yao Li, S. Zhong, Tongwei Ren, Y. Liu\",\"doi\":\"10.1145/3444685.3446309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key component in simultaneous localization and mapping (SLAM) system, loop closure detection (LCD) eliminates the accumulated errors by recognizing previously visited places. In recent years, deep learning methods have been proved effective in LCD. However, most of the existing methods do not make good use of the useful information provided by monocular images, which tends to limit their performance in challenging dynamic scenarios with partial occlusion by moving objects. To this end, we propose a novel workflow, which is able to combine multiple information provided by images. We first introduce semantic information into LCD by developing a local-aware Class Activation Maps (CAMs) weighting method for extracting features, which can reduce the adverse effects of moving objects. Compared with previous methods based on semantic segmentation, our method has the advantage of not requiring additional models or other complex operations. In addition, we propose two effective temporal constraint strategies, which utilize the relationship of image sequences to improve the detection performance. Moreover, we propose to use the keypoint matching strategy as the final detector to further refuse false positives. Experiments on four publicly available datasets indicate that our approach can achieve higher accuracy and better robustness than the state-of-the-art methods.\",\"PeriodicalId\":119278,\"journal\":{\"name\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"volume\":\"2005 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444685.3446309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

闭环检测(LCD)是同步定位与地图绘制(SLAM)系统的关键组成部分,它通过识别以前去过的地方来消除累积误差。近年来,深度学习方法已被证明在LCD中是有效的。然而,现有的大多数方法并没有很好地利用单眼图像提供的有用信息,这往往限制了它们在具有运动物体局部遮挡的动态场景中的性能。为此,我们提出了一种新的工作流,该工作流能够将图像提供的多种信息组合在一起。我们首先通过开发一种局部感知的类激活图(CAMs)加权方法将语义信息引入LCD中,以提取特征,从而减少运动物体的不利影响。与以往基于语义分割的方法相比,我们的方法不需要额外的模型和其他复杂的操作。此外,我们提出了两种有效的时间约束策略,利用图像序列之间的关系来提高检测性能。此外,我们提出使用关键点匹配策略作为最终检测器,进一步拒绝误报。在四个公开可用的数据集上的实验表明,我们的方法比最先进的方法可以达到更高的精度和更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusing CAMs-weighted features and temporal information for robust loop closure detection
As a key component in simultaneous localization and mapping (SLAM) system, loop closure detection (LCD) eliminates the accumulated errors by recognizing previously visited places. In recent years, deep learning methods have been proved effective in LCD. However, most of the existing methods do not make good use of the useful information provided by monocular images, which tends to limit their performance in challenging dynamic scenarios with partial occlusion by moving objects. To this end, we propose a novel workflow, which is able to combine multiple information provided by images. We first introduce semantic information into LCD by developing a local-aware Class Activation Maps (CAMs) weighting method for extracting features, which can reduce the adverse effects of moving objects. Compared with previous methods based on semantic segmentation, our method has the advantage of not requiring additional models or other complex operations. In addition, we propose two effective temporal constraint strategies, which utilize the relationship of image sequences to improve the detection performance. Moreover, we propose to use the keypoint matching strategy as the final detector to further refuse false positives. Experiments on four publicly available datasets indicate that our approach can achieve higher accuracy and better robustness than the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1