基于深度学习模型的元启发式实时建筑裂缝视觉测量系统

U. R. Babu, Tarun Gehlot, S. Thenmozhi, S. Chandre, A. Ravitheja, A. Gopi
{"title":"基于深度学习模型的元启发式实时建筑裂缝视觉测量系统","authors":"U. R. Babu, Tarun Gehlot, S. Thenmozhi, S. Chandre, A. Ravitheja, A. Gopi","doi":"10.1109/ICOEI56765.2023.10125931","DOIUrl":null,"url":null,"abstract":"Cracks in concrete allow aggressive chemicals to enter the reinforcement and cause corrosion, affecting reinforced concrete longevity. Crack identification is crucial to damage assessment. Visual examination is the most common concrete infrastructure monitoring method. Inspectors visually estimate flaws using skill, engineering judgment, and experience. However, this process is subjective, time-consuming, and requires access to numerous challenging structures. One progress hinges on improving or combining conventional digital image processing methods. Deep learning (DL) methods like CNN can now overcome image processing's crack detection limitations. This study introduces the Real-Time Building Crack Visual Measurement System utilizing Metaheuristics with Deep Learning (RBCVMS-MDL) model. RBCVMS-MDL detects construction cracks using DL principles. Three main steps are involved in RBCVMS-MDL. First, ResNet is used to build feature vectors. Salp Swarm Algorithm (SSA) also tunes ResNet method hyperparameters Finally, Radial Basis Function (RBF) can detect and classify cracks. RBCVMS-MDL outperforms other methods in crack image dataset performance validation.","PeriodicalId":168942,"journal":{"name":"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real Time Building Crack Visual Measurement System using Metaheuristics with Deep Learning Model\",\"authors\":\"U. R. Babu, Tarun Gehlot, S. Thenmozhi, S. Chandre, A. Ravitheja, A. Gopi\",\"doi\":\"10.1109/ICOEI56765.2023.10125931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cracks in concrete allow aggressive chemicals to enter the reinforcement and cause corrosion, affecting reinforced concrete longevity. Crack identification is crucial to damage assessment. Visual examination is the most common concrete infrastructure monitoring method. Inspectors visually estimate flaws using skill, engineering judgment, and experience. However, this process is subjective, time-consuming, and requires access to numerous challenging structures. One progress hinges on improving or combining conventional digital image processing methods. Deep learning (DL) methods like CNN can now overcome image processing's crack detection limitations. This study introduces the Real-Time Building Crack Visual Measurement System utilizing Metaheuristics with Deep Learning (RBCVMS-MDL) model. RBCVMS-MDL detects construction cracks using DL principles. Three main steps are involved in RBCVMS-MDL. First, ResNet is used to build feature vectors. Salp Swarm Algorithm (SSA) also tunes ResNet method hyperparameters Finally, Radial Basis Function (RBF) can detect and classify cracks. RBCVMS-MDL outperforms other methods in crack image dataset performance validation.\",\"PeriodicalId\":168942,\"journal\":{\"name\":\"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOEI56765.2023.10125931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Trends in Electronics and Informatics (ICOEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOEI56765.2023.10125931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

混凝土中的裂缝会使腐蚀性化学物质进入钢筋,造成腐蚀,影响钢筋混凝土的使用寿命。裂纹识别是损伤评估的关键。目测是混凝土基础设施最常用的监测方法。检验员使用技术、工程判断和经验来直观地评估缺陷。然而,这个过程是主观的,耗时的,并且需要访问许多具有挑战性的结构。其中一项进展是改进或结合传统的数字图像处理方法。像CNN这样的深度学习(DL)方法现在可以克服图像处理的裂纹检测限制。本文介绍了基于深度学习的元启发式实时建筑裂缝视觉测量系统(RBCVMS-MDL)模型。RBCVMS-MDL使用DL原理检测建筑裂缝。RBCVMS-MDL涉及三个主要步骤。首先,利用ResNet构建特征向量。Salp Swarm Algorithm (SSA)对ResNet方法的超参数进行了调整,最后利用径向基函数(RBF)对裂缝进行检测和分类。RBCVMS-MDL在裂纹图像数据集性能验证方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real Time Building Crack Visual Measurement System using Metaheuristics with Deep Learning Model
Cracks in concrete allow aggressive chemicals to enter the reinforcement and cause corrosion, affecting reinforced concrete longevity. Crack identification is crucial to damage assessment. Visual examination is the most common concrete infrastructure monitoring method. Inspectors visually estimate flaws using skill, engineering judgment, and experience. However, this process is subjective, time-consuming, and requires access to numerous challenging structures. One progress hinges on improving or combining conventional digital image processing methods. Deep learning (DL) methods like CNN can now overcome image processing's crack detection limitations. This study introduces the Real-Time Building Crack Visual Measurement System utilizing Metaheuristics with Deep Learning (RBCVMS-MDL) model. RBCVMS-MDL detects construction cracks using DL principles. Three main steps are involved in RBCVMS-MDL. First, ResNet is used to build feature vectors. Salp Swarm Algorithm (SSA) also tunes ResNet method hyperparameters Finally, Radial Basis Function (RBF) can detect and classify cracks. RBCVMS-MDL outperforms other methods in crack image dataset performance validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Crop Recommender System using Machine Learning and IoT Implementation of Ripple Carry Adder Using Full Swing Gate Diffusion Input Minimization of Losses in 119 Bus Radial Distribution Network using PSO Algorithm A Novel Cell Density Prediction Design using Optimal Deep Learning with Salp Swarm Algorithm Blockchain-based Secure Health Records in the Healthcare Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1