基于粘弹性的仿人机器人仿生上肢抗冲击机构

Zezheng Zhang, Huaxin Liu, Zhangguo Yu, Xuechao Chen, Qiang Huang, Qinqin Zhou, Zhaoyang Cai, X. Guo, Weimin Zhang
{"title":"基于粘弹性的仿人机器人仿生上肢抗冲击机构","authors":"Zezheng Zhang, Huaxin Liu, Zhangguo Yu, Xuechao Chen, Qiang Huang, Qinqin Zhou, Zhaoyang Cai, X. Guo, Weimin Zhang","doi":"10.1109/HUMANOIDS.2017.8246939","DOIUrl":null,"url":null,"abstract":"Humanoid robots encounter high falling risks when they walk or operate in an uncertain environment. In this paper, we propose a biomimetic mechanism for the upper limb of a humanoid robot that provides shock resistance when the robot falls forward. This biomimetic mechanism is based on viscoelasticity, and was modeled on human bones and muscles to achieve supporting and buffering. We install a series elastic component within the robot's elbow and also install a viscoelastically active pneumatically actuated impact protection device. We perform the falling forward experiments using our experimental platform, and we employ encoder, IMU, air gauge and F-T sensor to collect the experimental data. Based on the analysis of the experimental data, we conclude that the proposed biomimetic mechanism which is modeled on actual human bones and muscles can support the robot body, absorb the falling impact and against falling damage.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Biomimetic upper limb mechanism of humanoid robot for shock resistance based on viscoelasticity\",\"authors\":\"Zezheng Zhang, Huaxin Liu, Zhangguo Yu, Xuechao Chen, Qiang Huang, Qinqin Zhou, Zhaoyang Cai, X. Guo, Weimin Zhang\",\"doi\":\"10.1109/HUMANOIDS.2017.8246939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humanoid robots encounter high falling risks when they walk or operate in an uncertain environment. In this paper, we propose a biomimetic mechanism for the upper limb of a humanoid robot that provides shock resistance when the robot falls forward. This biomimetic mechanism is based on viscoelasticity, and was modeled on human bones and muscles to achieve supporting and buffering. We install a series elastic component within the robot's elbow and also install a viscoelastically active pneumatically actuated impact protection device. We perform the falling forward experiments using our experimental platform, and we employ encoder, IMU, air gauge and F-T sensor to collect the experimental data. Based on the analysis of the experimental data, we conclude that the proposed biomimetic mechanism which is modeled on actual human bones and muscles can support the robot body, absorb the falling impact and against falling damage.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人形机器人在不确定环境中行走或操作时,会遇到很高的坠落风险。在本文中,我们提出了一种仿人机器人上肢的仿生机制,当机器人向前摔倒时,它提供了抗冲击的能力。这种仿生机制是基于粘弹性的,并以人体骨骼和肌肉为模型来实现支撑和缓冲。我们在机器人的肘部内安装了一系列弹性元件,并安装了粘弹主动气动冲击保护装置。实验平台采用编码器、IMU、气压计、F-T传感器采集实验数据。通过对实验数据的分析,提出了以人体骨骼和肌肉为模型的仿生机构,可以支撑机器人身体,吸收跌落冲击,抵御跌落损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomimetic upper limb mechanism of humanoid robot for shock resistance based on viscoelasticity
Humanoid robots encounter high falling risks when they walk or operate in an uncertain environment. In this paper, we propose a biomimetic mechanism for the upper limb of a humanoid robot that provides shock resistance when the robot falls forward. This biomimetic mechanism is based on viscoelasticity, and was modeled on human bones and muscles to achieve supporting and buffering. We install a series elastic component within the robot's elbow and also install a viscoelastically active pneumatically actuated impact protection device. We perform the falling forward experiments using our experimental platform, and we employ encoder, IMU, air gauge and F-T sensor to collect the experimental data. Based on the analysis of the experimental data, we conclude that the proposed biomimetic mechanism which is modeled on actual human bones and muscles can support the robot body, absorb the falling impact and against falling damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems Tilt estimator for 3D non-rigid pendulum based on a tri-axial accelerometer and gyrometer Optimal and robust walking using intrinsic properties of a series-elastic robot Experimental evaluation of simple estimators for humanoid robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1