基于移动纳米传感器的血管异常检测的机器学习方法

J. T. Gómez, Anke Kuestner, Ketki Pitke, Jennifer Simonjan, B. Unluturk, F. Dressler
{"title":"基于移动纳米传感器的血管异常检测的机器学习方法","authors":"J. T. Gómez, Anke Kuestner, Ketki Pitke, Jennifer Simonjan, B. Unluturk, F. Dressler","doi":"10.1145/3485730.3494037","DOIUrl":null,"url":null,"abstract":"Early detection of diseases in the human body is of utmost importance for the diagnosis and medical treatment of patients. Supported by recent advancements in nanotechnology, diseases may be detected by patrolling nanosensors, even before symptoms appear. This paper explores the detection capabilities of nanosensors flowing through the human circulatory system (HCS). We model the HCS through a Markov chain and propose the use of machine learning (ML) methods to learn the corresponding transition probabilities. Doing so, we propose a methodology to develop an early detection mechanism of quorum sensing (QS) molecules released by bacteria. Simulation results indicate the suitability of our machine learning approach as a basis for in-body precision medicine.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Machine Learning Approach for Abnormality Detection in Blood Vessels via Mobile Nanosensors\",\"authors\":\"J. T. Gómez, Anke Kuestner, Ketki Pitke, Jennifer Simonjan, B. Unluturk, F. Dressler\",\"doi\":\"10.1145/3485730.3494037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early detection of diseases in the human body is of utmost importance for the diagnosis and medical treatment of patients. Supported by recent advancements in nanotechnology, diseases may be detected by patrolling nanosensors, even before symptoms appear. This paper explores the detection capabilities of nanosensors flowing through the human circulatory system (HCS). We model the HCS through a Markov chain and propose the use of machine learning (ML) methods to learn the corresponding transition probabilities. Doing so, we propose a methodology to develop an early detection mechanism of quorum sensing (QS) molecules released by bacteria. Simulation results indicate the suitability of our machine learning approach as a basis for in-body precision medicine.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3494037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3494037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

早期发现人体疾病对患者的诊断和医疗至关重要。在纳米技术最新进展的支持下,巡查的纳米传感器甚至可以在症状出现之前检测到疾病。本文探讨了纳米传感器在人体循环系统(HCS)中的检测能力。我们通过马尔可夫链对HCS建模,并提出使用机器学习(ML)方法来学习相应的转移概率。为此,我们提出了一种方法来开发细菌释放的群体感应(QS)分子的早期检测机制。仿真结果表明,我们的机器学习方法适合作为体内精准医疗的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Approach for Abnormality Detection in Blood Vessels via Mobile Nanosensors
Early detection of diseases in the human body is of utmost importance for the diagnosis and medical treatment of patients. Supported by recent advancements in nanotechnology, diseases may be detected by patrolling nanosensors, even before symptoms appear. This paper explores the detection capabilities of nanosensors flowing through the human circulatory system (HCS). We model the HCS through a Markov chain and propose the use of machine learning (ML) methods to learn the corresponding transition probabilities. Doing so, we propose a methodology to develop an early detection mechanism of quorum sensing (QS) molecules released by bacteria. Simulation results indicate the suitability of our machine learning approach as a basis for in-body precision medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1