基于时间序列聚类的设备传感器信号特征提取及其缺陷预测应用

Daisuke Hamaguchi, Tomonari Masada, Takumi Eguchi
{"title":"基于时间序列聚类的设备传感器信号特征提取及其缺陷预测应用","authors":"Daisuke Hamaguchi, Tomonari Masada, Takumi Eguchi","doi":"10.1109/ISSM51728.2020.9377525","DOIUrl":null,"url":null,"abstract":"In semiconductor manufacturing processes, it is important to quickly identify any signs of the occurrence of defects. We applied a time-series clustering method to the signal data of processing equipment and obtained information related to the occurrence of defects. By using the information as the feature values of a prediction model, we were able to predict defects more accurately than by using only conventional feature values.","PeriodicalId":270309,"journal":{"name":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Extraction from Equipment Sensor Signals with Time Series Clustering and Its Application to Defect Prediction\",\"authors\":\"Daisuke Hamaguchi, Tomonari Masada, Takumi Eguchi\",\"doi\":\"10.1109/ISSM51728.2020.9377525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In semiconductor manufacturing processes, it is important to quickly identify any signs of the occurrence of defects. We applied a time-series clustering method to the signal data of processing equipment and obtained information related to the occurrence of defects. By using the information as the feature values of a prediction model, we were able to predict defects more accurately than by using only conventional feature values.\",\"PeriodicalId\":270309,\"journal\":{\"name\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Semiconductor Manufacturing (ISSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSM51728.2020.9377525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM51728.2020.9377525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在半导体制造过程中,快速识别缺陷发生的任何迹象是很重要的。我们采用时间序列聚类方法对加工设备的信号数据进行聚类,得到缺陷发生的相关信息。通过使用这些信息作为预测模型的特征值,我们能够比仅使用常规特征值更准确地预测缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Extraction from Equipment Sensor Signals with Time Series Clustering and Its Application to Defect Prediction
In semiconductor manufacturing processes, it is important to quickly identify any signs of the occurrence of defects. We applied a time-series clustering method to the signal data of processing equipment and obtained information related to the occurrence of defects. By using the information as the feature values of a prediction model, we were able to predict defects more accurately than by using only conventional feature values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Process Optimization of Trench Field Plate Power MOSFETs with Sequential Phosphorus-Doped Silicon Predicting and considering properties of general polymers using incomplete dataset Digital Transformation's Impact on Smart Manufacturing Etching characteristics of PECVD-prepared SiN films with CF4/D2 and CF4/H2 plasmas at different temperatures Using Quartz Crystal Microbalance to Provide Real-Time Process Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1