建立一个通用的特征提取框架

T. Moons, E. Pauwels, L. Gool, A. Oosterlinck
{"title":"建立一个通用的特征提取框架","authors":"T. Moons, E. Pauwels, L. Gool, A. Oosterlinck","doi":"10.1109/CVPR.1992.223237","DOIUrl":null,"url":null,"abstract":"It is shown how object recognition and optical flow can be captured within a single framework. These examples have been selected because they illustrate two complementary problems which can be tackled using the same unified approach based on Lie theory. The object recognition work referred to is based on the extraction of shape invariants and has been reported elsewhere. The present study focuses on using the same framework for the calculation of the optical flow. Besides the introduction of some new methods, it is shown that several well-known schemes can be derived following the same principles.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards a general framework for feature extraction\",\"authors\":\"T. Moons, E. Pauwels, L. Gool, A. Oosterlinck\",\"doi\":\"10.1109/CVPR.1992.223237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown how object recognition and optical flow can be captured within a single framework. These examples have been selected because they illustrate two complementary problems which can be tackled using the same unified approach based on Lie theory. The object recognition work referred to is based on the extraction of shape invariants and has been reported elsewhere. The present study focuses on using the same framework for the calculation of the optical flow. Besides the introduction of some new methods, it is shown that several well-known schemes can be derived following the same principles.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

它显示了如何对象识别和光流可以捕获在一个单一的框架。之所以选择这些例子,是因为它们说明了两个互补的问题,这两个问题可以使用基于李论的统一方法来解决。所提到的目标识别工作是基于形状不变量的提取,并已在其他地方报道。本研究的重点是使用相同的框架来计算光流。除了引入一些新方法外,还证明了遵循相同的原理可以推导出几种已知的方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a general framework for feature extraction
It is shown how object recognition and optical flow can be captured within a single framework. These examples have been selected because they illustrate two complementary problems which can be tackled using the same unified approach based on Lie theory. The object recognition work referred to is based on the extraction of shape invariants and has been reported elsewhere. The present study focuses on using the same framework for the calculation of the optical flow. Besides the introduction of some new methods, it is shown that several well-known schemes can be derived following the same principles.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion trajectories An heterogeneous M-SIMD architecture for Kalman filter controlled processing of image sequences Recognizing 3D objects from 2D images: an error analysis On the derivation of geometric constraints in stereo Computing stereo correspondences in the presence of narrow occluding objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1