{"title":"建立一个通用的特征提取框架","authors":"T. Moons, E. Pauwels, L. Gool, A. Oosterlinck","doi":"10.1109/CVPR.1992.223237","DOIUrl":null,"url":null,"abstract":"It is shown how object recognition and optical flow can be captured within a single framework. These examples have been selected because they illustrate two complementary problems which can be tackled using the same unified approach based on Lie theory. The object recognition work referred to is based on the extraction of shape invariants and has been reported elsewhere. The present study focuses on using the same framework for the calculation of the optical flow. Besides the introduction of some new methods, it is shown that several well-known schemes can be derived following the same principles.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards a general framework for feature extraction\",\"authors\":\"T. Moons, E. Pauwels, L. Gool, A. Oosterlinck\",\"doi\":\"10.1109/CVPR.1992.223237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown how object recognition and optical flow can be captured within a single framework. These examples have been selected because they illustrate two complementary problems which can be tackled using the same unified approach based on Lie theory. The object recognition work referred to is based on the extraction of shape invariants and has been reported elsewhere. The present study focuses on using the same framework for the calculation of the optical flow. Besides the introduction of some new methods, it is shown that several well-known schemes can be derived following the same principles.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a general framework for feature extraction
It is shown how object recognition and optical flow can be captured within a single framework. These examples have been selected because they illustrate two complementary problems which can be tackled using the same unified approach based on Lie theory. The object recognition work referred to is based on the extraction of shape invariants and has been reported elsewhere. The present study focuses on using the same framework for the calculation of the optical flow. Besides the introduction of some new methods, it is shown that several well-known schemes can be derived following the same principles.<>