有无表面活性剂合成的聚吡咯纳米颗粒对重金属净化的评价

S. Zayan, A. El‐Shazly, M. El-Kady
{"title":"有无表面活性剂合成的聚吡咯纳米颗粒对重金属净化的评价","authors":"S. Zayan, A. El‐Shazly, M. El-Kady","doi":"10.1063/1.5138511","DOIUrl":null,"url":null,"abstract":"Polypyrrole black powder nanoparticles (PPy NPs) have been synthesized by chemical oxidative polymerization in the absence and presence of surfactant and tested as an adsorbent for manganese ions sequestration from aqueous solution. PPy NPs were chemically prepared by chemical oxidation using ferric chloride (FeCl3) as an oxidant, distillate water as a solvent, and polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as surfactants. PPy NPs were found to be mesoporous with surfaces area of approximately 8 m2/g, 22 m2/g, and 32 m2/g, and average pore size 51 nm, 33 nm, and 29 nm for PPy, PPy/PVP, and PPy/PVA respectively. The prepared PPy adsorbents were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), and Atomic Absorption Spectrometer (AAS) which was used to measure the manganese concentration. The batch adsorption process was conducted by varying agitation time at constant pH. Data from the AAS analysis showed that manganese ions removal from water effluent was almost 78%, 86%, and 95% after 2 hours for PPy, PPy/PVP, and PPy/PVA respectively. The results demonstrated that PPy prepared in the presence of PVA is a super-adsorbent for manganese decontamination from wastewater and can be a potential material in this field.","PeriodicalId":186251,"journal":{"name":"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Assessment of polypyrrole nanoparticles synthesized in presence and absence of surfactant for heavy metals decontamination\",\"authors\":\"S. Zayan, A. El‐Shazly, M. El-Kady\",\"doi\":\"10.1063/1.5138511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polypyrrole black powder nanoparticles (PPy NPs) have been synthesized by chemical oxidative polymerization in the absence and presence of surfactant and tested as an adsorbent for manganese ions sequestration from aqueous solution. PPy NPs were chemically prepared by chemical oxidation using ferric chloride (FeCl3) as an oxidant, distillate water as a solvent, and polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as surfactants. PPy NPs were found to be mesoporous with surfaces area of approximately 8 m2/g, 22 m2/g, and 32 m2/g, and average pore size 51 nm, 33 nm, and 29 nm for PPy, PPy/PVP, and PPy/PVA respectively. The prepared PPy adsorbents were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), and Atomic Absorption Spectrometer (AAS) which was used to measure the manganese concentration. The batch adsorption process was conducted by varying agitation time at constant pH. Data from the AAS analysis showed that manganese ions removal from water effluent was almost 78%, 86%, and 95% after 2 hours for PPy, PPy/PVP, and PPy/PVA respectively. The results demonstrated that PPy prepared in the presence of PVA is a super-adsorbent for manganese decontamination from wastewater and can be a potential material in this field.\",\"PeriodicalId\":186251,\"journal\":{\"name\":\"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5138511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES19Gr","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5138511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

采用化学氧化聚合法制备了聚吡咯黑色粉末纳米颗粒(PPy NPs),并对其作为吸附锰离子的吸附剂进行了实验研究。以三氯化铁(FeCl3)为氧化剂,馏分水为溶剂,聚乙烯吡咯烷酮(PVP)和聚乙烯醇(PVA)为表面活性剂,采用化学氧化法制备了聚吡咯烷酮NPs。PPy NPs具有介孔性质,比表面积分别为8m2 /g、22m2 /g和32m2 /g,平均孔径分别为51nm、33nm和29nm。采用x射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)和原子吸收光谱仪(AAS)对制备的PPy吸附剂进行了表征。在恒定ph条件下,通过不同搅拌时间进行间歇吸附。原子吸收光谱分析结果表明,对PPy、PPy/PVP和PPy/PVA, 2 h后出水锰离子去除率分别接近78%、86%和95%。结果表明,在PVA存在下制备的聚吡啶是一种超吸附剂,可用于污水中锰的去污,是一种有潜力的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of polypyrrole nanoparticles synthesized in presence and absence of surfactant for heavy metals decontamination
Polypyrrole black powder nanoparticles (PPy NPs) have been synthesized by chemical oxidative polymerization in the absence and presence of surfactant and tested as an adsorbent for manganese ions sequestration from aqueous solution. PPy NPs were chemically prepared by chemical oxidation using ferric chloride (FeCl3) as an oxidant, distillate water as a solvent, and polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as surfactants. PPy NPs were found to be mesoporous with surfaces area of approximately 8 m2/g, 22 m2/g, and 32 m2/g, and average pore size 51 nm, 33 nm, and 29 nm for PPy, PPy/PVP, and PPy/PVA respectively. The prepared PPy adsorbents were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), and Atomic Absorption Spectrometer (AAS) which was used to measure the manganese concentration. The batch adsorption process was conducted by varying agitation time at constant pH. Data from the AAS analysis showed that manganese ions removal from water effluent was almost 78%, 86%, and 95% after 2 hours for PPy, PPy/PVP, and PPy/PVA respectively. The results demonstrated that PPy prepared in the presence of PVA is a super-adsorbent for manganese decontamination from wastewater and can be a potential material in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical simulation model of a proton exchange membrane fuel cell Study the effect of nanoic indium oxide (In2O3) on electrical properties of ZnO- based varistor Synthesis of copper oxide nanoparticles (CuO-NPs) and its evaluation of antibacterial activity against P. aeruginosa biofilm gene’s Comparative analysis regarding burning process for different fuels in hybrid rocket engines Antibacterial activity of chitosan/PAN blend prepared at different ratios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1