多模型神经网络图像分类

R. J. Machado, P. Neves
{"title":"多模型神经网络图像分类","authors":"R. J. Machado, P. Neves","doi":"10.1109/CYBVIS.1996.629440","DOIUrl":null,"url":null,"abstract":"In this paper we describe a simple hybrid architecture of multi-model neural network aimed at enhancing the accuracy of classification in image interpretation problems. We adopt a modular architecture with one neural network dedicated to each class of the problem domain, allowing each of these neural modules to be built according to a different paradigm. The selection of the paradigm for each class is based on a benchmark among a set of competitor neural network models. We demonstrate experimentally the effectiveness of this approach in the problem of deforestation monitoring in the Amazon region.","PeriodicalId":103287,"journal":{"name":"Proceedings II Workshop on Cybernetic Vision","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-model neural network for image classification\",\"authors\":\"R. J. Machado, P. Neves\",\"doi\":\"10.1109/CYBVIS.1996.629440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a simple hybrid architecture of multi-model neural network aimed at enhancing the accuracy of classification in image interpretation problems. We adopt a modular architecture with one neural network dedicated to each class of the problem domain, allowing each of these neural modules to be built according to a different paradigm. The selection of the paradigm for each class is based on a benchmark among a set of competitor neural network models. We demonstrate experimentally the effectiveness of this approach in the problem of deforestation monitoring in the Amazon region.\",\"PeriodicalId\":103287,\"journal\":{\"name\":\"Proceedings II Workshop on Cybernetic Vision\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings II Workshop on Cybernetic Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBVIS.1996.629440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings II Workshop on Cybernetic Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBVIS.1996.629440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了一种简单的多模型神经网络混合结构,旨在提高图像解译问题的分类精度。我们采用模块化架构,其中一个神经网络专用于问题域的每个类,允许每个神经模块根据不同的范式构建。每个类的范式选择是基于一组竞争对手神经网络模型中的基准。我们通过实验证明了这种方法在亚马逊地区森林砍伐监测问题上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-model neural network for image classification
In this paper we describe a simple hybrid architecture of multi-model neural network aimed at enhancing the accuracy of classification in image interpretation problems. We adopt a modular architecture with one neural network dedicated to each class of the problem domain, allowing each of these neural modules to be built according to a different paradigm. The selection of the paradigm for each class is based on a benchmark among a set of competitor neural network models. We demonstrate experimentally the effectiveness of this approach in the problem of deforestation monitoring in the Amazon region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human visual contrast detection of radial frequency stimuli defined by Bessel profiles j/sub 0/,j/sub 1/,j/sub 2/,j/sub 4/,j/sub 8/,j/sub 16/ and its relation to angular frequencies, Development of a computer-based system for studying human stereopsis: contribution to the study of human speed of detection of visual depth PowerVis: empowering the user with a multi-modal visualization system Diagnostics of parallel and serial processing in a visual search task Color vision in New World monkeys: di- and/or trichromaticity?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1