{"title":"多模型神经网络图像分类","authors":"R. J. Machado, P. Neves","doi":"10.1109/CYBVIS.1996.629440","DOIUrl":null,"url":null,"abstract":"In this paper we describe a simple hybrid architecture of multi-model neural network aimed at enhancing the accuracy of classification in image interpretation problems. We adopt a modular architecture with one neural network dedicated to each class of the problem domain, allowing each of these neural modules to be built according to a different paradigm. The selection of the paradigm for each class is based on a benchmark among a set of competitor neural network models. We demonstrate experimentally the effectiveness of this approach in the problem of deforestation monitoring in the Amazon region.","PeriodicalId":103287,"journal":{"name":"Proceedings II Workshop on Cybernetic Vision","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-model neural network for image classification\",\"authors\":\"R. J. Machado, P. Neves\",\"doi\":\"10.1109/CYBVIS.1996.629440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a simple hybrid architecture of multi-model neural network aimed at enhancing the accuracy of classification in image interpretation problems. We adopt a modular architecture with one neural network dedicated to each class of the problem domain, allowing each of these neural modules to be built according to a different paradigm. The selection of the paradigm for each class is based on a benchmark among a set of competitor neural network models. We demonstrate experimentally the effectiveness of this approach in the problem of deforestation monitoring in the Amazon region.\",\"PeriodicalId\":103287,\"journal\":{\"name\":\"Proceedings II Workshop on Cybernetic Vision\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings II Workshop on Cybernetic Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBVIS.1996.629440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings II Workshop on Cybernetic Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBVIS.1996.629440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-model neural network for image classification
In this paper we describe a simple hybrid architecture of multi-model neural network aimed at enhancing the accuracy of classification in image interpretation problems. We adopt a modular architecture with one neural network dedicated to each class of the problem domain, allowing each of these neural modules to be built according to a different paradigm. The selection of the paradigm for each class is based on a benchmark among a set of competitor neural network models. We demonstrate experimentally the effectiveness of this approach in the problem of deforestation monitoring in the Amazon region.