Wang Zhigong, L. Xiaoying, Li Wenyuan, Wang Huiling, Zhang Zhenyu, Wang Yufeng, Cui Wei
{"title":"中枢神经信号检测与刺激的微电子学研究","authors":"Wang Zhigong, L. Xiaoying, Li Wenyuan, Wang Huiling, Zhang Zhenyu, Wang Yufeng, Cui Wei","doi":"10.1109/ICNIC.2005.1499875","DOIUrl":null,"url":null,"abstract":"Test circuits for the signal detection and the function electrical stimulation (FES) of neurons have been designed, implemented at first by using discrete devices and characterized off-body. The detecting circuit consisting of three-stage operational amplifiers has a controllable gain up to 10/sup 5/, a -3 dB bandwidth of 30 kHz, and an equivalent input noise of about 9 nV//spl radic/Hz. The FES circuit consisting of two-stage operational amplifiers has a bandwidth of more than 10 kHz and a variable gain from 20 dB to 60 dB can provide a current of more than 1 mA to a load of 10 k/spl Omega/ They are intended to connect with both cuff-type and staff-type microelectrodes. Integrated circuits (IC) for the neural signal process have been designed with features of low voltage and low power. A more biocompatible composite has been synthesized to modify the silicon and related material.","PeriodicalId":169717,"journal":{"name":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Study of microelectronics for detecting and stimulating of central neural signals\",\"authors\":\"Wang Zhigong, L. Xiaoying, Li Wenyuan, Wang Huiling, Zhang Zhenyu, Wang Yufeng, Cui Wei\",\"doi\":\"10.1109/ICNIC.2005.1499875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test circuits for the signal detection and the function electrical stimulation (FES) of neurons have been designed, implemented at first by using discrete devices and characterized off-body. The detecting circuit consisting of three-stage operational amplifiers has a controllable gain up to 10/sup 5/, a -3 dB bandwidth of 30 kHz, and an equivalent input noise of about 9 nV//spl radic/Hz. The FES circuit consisting of two-stage operational amplifiers has a bandwidth of more than 10 kHz and a variable gain from 20 dB to 60 dB can provide a current of more than 1 mA to a load of 10 k/spl Omega/ They are intended to connect with both cuff-type and staff-type microelectrodes. Integrated circuits (IC) for the neural signal process have been designed with features of low voltage and low power. A more biocompatible composite has been synthesized to modify the silicon and related material.\",\"PeriodicalId\":169717,\"journal\":{\"name\":\"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIC.2005.1499875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIC.2005.1499875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of microelectronics for detecting and stimulating of central neural signals
Test circuits for the signal detection and the function electrical stimulation (FES) of neurons have been designed, implemented at first by using discrete devices and characterized off-body. The detecting circuit consisting of three-stage operational amplifiers has a controllable gain up to 10/sup 5/, a -3 dB bandwidth of 30 kHz, and an equivalent input noise of about 9 nV//spl radic/Hz. The FES circuit consisting of two-stage operational amplifiers has a bandwidth of more than 10 kHz and a variable gain from 20 dB to 60 dB can provide a current of more than 1 mA to a load of 10 k/spl Omega/ They are intended to connect with both cuff-type and staff-type microelectrodes. Integrated circuits (IC) for the neural signal process have been designed with features of low voltage and low power. A more biocompatible composite has been synthesized to modify the silicon and related material.