{"title":"一种抽象导向的微处理器验证马尔可夫模型仿真方法","authors":"Zhang Tao, Tao Lv, Xiaowei Li","doi":"10.1109/DATE.2010.5457155","DOIUrl":null,"url":null,"abstract":"In order to combine the power of simulation-based and formal techniques, semi-formal methods have been widely explored. Among these methods, abstraction-guided simulation is a quite promising one. In this paper, we propose an abstraction-guided simulation approach aiming to cover hard-to-reach states in functional verification of microprocessors. A Markov model is constructed utilizing the high level functional specification, i.e. ISA. Such model integrates vector correlations. Furthermore, several strategies utilizing abstraction information are proposed as an effective guidance to the test generation. Experimental results on two complex microprocessors show that our approach is more efficient in covering hard-to-reach states than similar methods. Comparing with some work with other intelligent engines, our approach could guarantee higher hit ratio of target states without efficiency loss.","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An abstraction-guided simulation approach using Markov models for microprocessor verification\",\"authors\":\"Zhang Tao, Tao Lv, Xiaowei Li\",\"doi\":\"10.1109/DATE.2010.5457155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to combine the power of simulation-based and formal techniques, semi-formal methods have been widely explored. Among these methods, abstraction-guided simulation is a quite promising one. In this paper, we propose an abstraction-guided simulation approach aiming to cover hard-to-reach states in functional verification of microprocessors. A Markov model is constructed utilizing the high level functional specification, i.e. ISA. Such model integrates vector correlations. Furthermore, several strategies utilizing abstraction information are proposed as an effective guidance to the test generation. Experimental results on two complex microprocessors show that our approach is more efficient in covering hard-to-reach states than similar methods. Comparing with some work with other intelligent engines, our approach could guarantee higher hit ratio of target states without efficiency loss.\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An abstraction-guided simulation approach using Markov models for microprocessor verification
In order to combine the power of simulation-based and formal techniques, semi-formal methods have been widely explored. Among these methods, abstraction-guided simulation is a quite promising one. In this paper, we propose an abstraction-guided simulation approach aiming to cover hard-to-reach states in functional verification of microprocessors. A Markov model is constructed utilizing the high level functional specification, i.e. ISA. Such model integrates vector correlations. Furthermore, several strategies utilizing abstraction information are proposed as an effective guidance to the test generation. Experimental results on two complex microprocessors show that our approach is more efficient in covering hard-to-reach states than similar methods. Comparing with some work with other intelligent engines, our approach could guarantee higher hit ratio of target states without efficiency loss.