基于扩展卡尔曼滤波的智能交通系统车辆协同定位

Liping Du, Long Chen, Xiaotian Hou, Yueyun Chen
{"title":"基于扩展卡尔曼滤波的智能交通系统车辆协同定位","authors":"Liping Du, Long Chen, Xiaotian Hou, Yueyun Chen","doi":"10.1109/WOCC.2019.8770586","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed an Extended Kalman filter (EKF) method for multi-vehicle cooperative localization using Global Positioning System (GPS) data and inter-vehicle position information. Each cooperative vehicle uses its own GPS receiver to estimate its position. And inter-vehicle position information is obtained by the Dedicated Short-range Communication (DSRC). This proposed method includes two processes. Firstly, the GPS positioning information of cooperative vehicles are collected to get the positioning matrix. Then the EKF is applied to the matrix to further improve the positioning accuracy. In the simulation, we analyze the impact of different numbers of neighbor vehicles on positioning accuracy and the performance of the proposed method has been verified.","PeriodicalId":285172,"journal":{"name":"2019 28th Wireless and Optical Communications Conference (WOCC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cooperative Vehicle Localization Base on Extended Kalman Filter In Intelligent Transportation System\",\"authors\":\"Liping Du, Long Chen, Xiaotian Hou, Yueyun Chen\",\"doi\":\"10.1109/WOCC.2019.8770586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed an Extended Kalman filter (EKF) method for multi-vehicle cooperative localization using Global Positioning System (GPS) data and inter-vehicle position information. Each cooperative vehicle uses its own GPS receiver to estimate its position. And inter-vehicle position information is obtained by the Dedicated Short-range Communication (DSRC). This proposed method includes two processes. Firstly, the GPS positioning information of cooperative vehicles are collected to get the positioning matrix. Then the EKF is applied to the matrix to further improve the positioning accuracy. In the simulation, we analyze the impact of different numbers of neighbor vehicles on positioning accuracy and the performance of the proposed method has been verified.\",\"PeriodicalId\":285172,\"journal\":{\"name\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 28th Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2019.8770586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2019.8770586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于GPS数据和车辆间位置信息的扩展卡尔曼滤波(EKF)多车协同定位方法。每辆合作车辆使用自己的GPS接收器来估计自己的位置。通过专用短程通信(DSRC)获取车辆间位置信息。该方法包括两个过程。首先,收集合作车辆的GPS定位信息,得到定位矩阵;然后将EKF应用于矩阵,进一步提高定位精度。仿真分析了不同相邻车辆数量对定位精度的影响,验证了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooperative Vehicle Localization Base on Extended Kalman Filter In Intelligent Transportation System
In this paper, we proposed an Extended Kalman filter (EKF) method for multi-vehicle cooperative localization using Global Positioning System (GPS) data and inter-vehicle position information. Each cooperative vehicle uses its own GPS receiver to estimate its position. And inter-vehicle position information is obtained by the Dedicated Short-range Communication (DSRC). This proposed method includes two processes. Firstly, the GPS positioning information of cooperative vehicles are collected to get the positioning matrix. Then the EKF is applied to the matrix to further improve the positioning accuracy. In the simulation, we analyze the impact of different numbers of neighbor vehicles on positioning accuracy and the performance of the proposed method has been verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rogue Base Station Detection Using A Machine Learning Approach Secrecy Performance Analysis for Hybrid Satellite Terrestrial Relay Networks with Multiple Eavesdroppers Challenges of Big Data Implementation in a Public Hospital Error Analysis of Single-Satellite Interference Source Positioning Based on Different Number of Co-Frequency Beams Design and Implementation of ΣΔ-3DT Based on Multi-Core DSP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1