S. Denysiuk, H. Bielokha, D. Derevianko, Bronytskyi Vadym
{"title":"具有迟滞控制的光伏变流器的设计与建模","authors":"S. Denysiuk, H. Bielokha, D. Derevianko, Bronytskyi Vadym","doi":"10.1109/ESS57819.2022.9969345","DOIUrl":null,"url":null,"abstract":"Solar energy is one of the most widely used renewable energy sources. A power converter is required to match the parameters of PV modules and the load (network). The article features a PV converter with a hysteresis control system, which consists of a boost converter and inverter. The inverter generates a sinusoidal current in the load (network) according to power quality standards. Digital simulation was carried out for two cases, namely: at variable temperature (constant irradiance) and at variable irradiance (constant temperature). In all operating modes, the power consumption was maximum and the output current was sinusoidal. There was developed a control system with hysteresis controllers, which made it possible to ensure high performance, accuracy, electromagnetic compatibility of the output current of the inverter with the network. THD was less than 5% within the entire range of studies. Inverter circuits, which were connected to a four-wire network, provided better current quality results than three-wire ones. This is due to the fact that there is phase interference in three-wire networks. In both cases, efficiency was almost the same and depended on the power of the PV modules.","PeriodicalId":432063,"journal":{"name":"2022 IEEE 8th International Conference on Energy Smart Systems (ESS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and modeling PV converter with hysteresis control\",\"authors\":\"S. Denysiuk, H. Bielokha, D. Derevianko, Bronytskyi Vadym\",\"doi\":\"10.1109/ESS57819.2022.9969345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar energy is one of the most widely used renewable energy sources. A power converter is required to match the parameters of PV modules and the load (network). The article features a PV converter with a hysteresis control system, which consists of a boost converter and inverter. The inverter generates a sinusoidal current in the load (network) according to power quality standards. Digital simulation was carried out for two cases, namely: at variable temperature (constant irradiance) and at variable irradiance (constant temperature). In all operating modes, the power consumption was maximum and the output current was sinusoidal. There was developed a control system with hysteresis controllers, which made it possible to ensure high performance, accuracy, electromagnetic compatibility of the output current of the inverter with the network. THD was less than 5% within the entire range of studies. Inverter circuits, which were connected to a four-wire network, provided better current quality results than three-wire ones. This is due to the fact that there is phase interference in three-wire networks. In both cases, efficiency was almost the same and depended on the power of the PV modules.\",\"PeriodicalId\":432063,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Energy Smart Systems (ESS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Energy Smart Systems (ESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESS57819.2022.9969345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Energy Smart Systems (ESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESS57819.2022.9969345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and modeling PV converter with hysteresis control
Solar energy is one of the most widely used renewable energy sources. A power converter is required to match the parameters of PV modules and the load (network). The article features a PV converter with a hysteresis control system, which consists of a boost converter and inverter. The inverter generates a sinusoidal current in the load (network) according to power quality standards. Digital simulation was carried out for two cases, namely: at variable temperature (constant irradiance) and at variable irradiance (constant temperature). In all operating modes, the power consumption was maximum and the output current was sinusoidal. There was developed a control system with hysteresis controllers, which made it possible to ensure high performance, accuracy, electromagnetic compatibility of the output current of the inverter with the network. THD was less than 5% within the entire range of studies. Inverter circuits, which were connected to a four-wire network, provided better current quality results than three-wire ones. This is due to the fact that there is phase interference in three-wire networks. In both cases, efficiency was almost the same and depended on the power of the PV modules.