基于无监督学习和语义角色标注的DBpedia本体词汇化研究

A. Marginean, Kando Eniko
{"title":"基于无监督学习和语义角色标注的DBpedia本体词汇化研究","authors":"A. Marginean, Kando Eniko","doi":"10.1109/SYNASC.2016.048","DOIUrl":null,"url":null,"abstract":"Filling the gap between natural language expressions and ontology concepts or properties is the new trend in Semantic Web. Ontology lexicalization introduces a new layer of lexical information for ontology properties and concepts. We propose a method based on unsupervised learning for the extraction of the potential lexical expressions of DBpedia propertiesfrom Wikipedia text corpus. It is a resource-driven approach that comprises three main steps. The first step consists of the extraction of DBpedia triples for the aimed property followed by the extraction of Wikipedia articles describing the resources from these triples. In the second step, sentences mostly related to the property are extracted from the articles and they are analyzed with a Semantic Role Labeler resulting in a set of SRL annotated trees. In the last step, clusters of expressions are built using spectral clustering based on the distances between the SRL trees. The clusters with the least variance are considered to be relevant for the lexical expressions of the property.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards Lexicalization of DBpedia Ontology with Unsupervised Learning and Semantic Role Labeling\",\"authors\":\"A. Marginean, Kando Eniko\",\"doi\":\"10.1109/SYNASC.2016.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Filling the gap between natural language expressions and ontology concepts or properties is the new trend in Semantic Web. Ontology lexicalization introduces a new layer of lexical information for ontology properties and concepts. We propose a method based on unsupervised learning for the extraction of the potential lexical expressions of DBpedia propertiesfrom Wikipedia text corpus. It is a resource-driven approach that comprises three main steps. The first step consists of the extraction of DBpedia triples for the aimed property followed by the extraction of Wikipedia articles describing the resources from these triples. In the second step, sentences mostly related to the property are extracted from the articles and they are analyzed with a Semantic Role Labeler resulting in a set of SRL annotated trees. In the last step, clusters of expressions are built using spectral clustering based on the distances between the SRL trees. The clusters with the least variance are considered to be relevant for the lexical expressions of the property.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

填补自然语言表达式与本体概念或属性之间的空白是语义Web的新趋势。本体词汇化为本体属性和概念引入了一个新的词汇信息层。本文提出了一种基于无监督学习的方法,用于从维基百科文本语料库中提取DBpedia属性的潜在词汇表达式。这是一种资源驱动的方法,包括三个主要步骤。第一步包括为目标属性提取DBpedia三元组,然后从这些三元组中提取描述资源的Wikipedia文章。在第二步中,从文章中提取与属性相关的句子,并使用语义角色标签器对其进行分析,从而生成一组SRL注释树。在最后一步中,基于SRL树之间的距离,使用光谱聚类构建表达簇。方差最小的聚类被认为与属性的词法表达式相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Lexicalization of DBpedia Ontology with Unsupervised Learning and Semantic Role Labeling
Filling the gap between natural language expressions and ontology concepts or properties is the new trend in Semantic Web. Ontology lexicalization introduces a new layer of lexical information for ontology properties and concepts. We propose a method based on unsupervised learning for the extraction of the potential lexical expressions of DBpedia propertiesfrom Wikipedia text corpus. It is a resource-driven approach that comprises three main steps. The first step consists of the extraction of DBpedia triples for the aimed property followed by the extraction of Wikipedia articles describing the resources from these triples. In the second step, sentences mostly related to the property are extracted from the articles and they are analyzed with a Semantic Role Labeler resulting in a set of SRL annotated trees. In the last step, clusters of expressions are built using spectral clustering based on the distances between the SRL trees. The clusters with the least variance are considered to be relevant for the lexical expressions of the property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1