用多变量时间序列建模测量视频序列之间的运动相似度

Rémi Auguste, Ahmed El Ghini, M. Bilasco, Nacim Ihaddadene, C. Djeraba
{"title":"用多变量时间序列建模测量视频序列之间的运动相似度","authors":"Rémi Auguste, Ahmed El Ghini, M. Bilasco, Nacim Ihaddadene, C. Djeraba","doi":"10.1109/ICMWI.2010.5647919","DOIUrl":null,"url":null,"abstract":"The analysis and interpretation of video contents is an important component of modern vision applications such as surveillance, motion synthesis and web-based user interfaces. A requirement shared by these very different applications is the ability to learn statistical models of appearance and motion from a collection of videos, and then use them for recognizing actions or persons in a new video. Measuring the similarity and dissimilarity between video sequences is crucial in any video sequences analysis and decision-making process. Furthermore, many data analysis processes effectively deal with moving objects and need to compute the similarity between trajectories. In this paper, we propose a similarity measure for multivariate time series using the Euclidean distance based on Vector Autoregressive (VAR) models. The proposed approach allows us to identify and recognize actions of persons in video sequences. The performance of our methodology is tested on a real dataset.","PeriodicalId":404577,"journal":{"name":"2010 International Conference on Machine and Web Intelligence","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Motion similarity measure between video sequences using multivariate time series modeling\",\"authors\":\"Rémi Auguste, Ahmed El Ghini, M. Bilasco, Nacim Ihaddadene, C. Djeraba\",\"doi\":\"10.1109/ICMWI.2010.5647919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis and interpretation of video contents is an important component of modern vision applications such as surveillance, motion synthesis and web-based user interfaces. A requirement shared by these very different applications is the ability to learn statistical models of appearance and motion from a collection of videos, and then use them for recognizing actions or persons in a new video. Measuring the similarity and dissimilarity between video sequences is crucial in any video sequences analysis and decision-making process. Furthermore, many data analysis processes effectively deal with moving objects and need to compute the similarity between trajectories. In this paper, we propose a similarity measure for multivariate time series using the Euclidean distance based on Vector Autoregressive (VAR) models. The proposed approach allows us to identify and recognize actions of persons in video sequences. The performance of our methodology is tested on a real dataset.\",\"PeriodicalId\":404577,\"journal\":{\"name\":\"2010 International Conference on Machine and Web Intelligence\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine and Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMWI.2010.5647919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine and Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMWI.2010.5647919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

视频内容的分析和解释是现代视觉应用的重要组成部分,如监控、运动合成和基于web的用户界面。这些非常不同的应用程序所共有的一个要求是能够从视频集合中学习外观和运动的统计模型,然后使用它们来识别新视频中的动作或人物。在视频序列分析和决策过程中,视频序列之间的相似性和差异性的度量是至关重要的。此外,许多数据分析过程需要有效地处理运动对象,并且需要计算轨迹之间的相似度。本文提出了一种基于向量自回归(VAR)模型的多变量时间序列相似性度量方法。所提出的方法使我们能够识别和识别视频序列中人物的动作。我们的方法在真实数据集上进行了性能测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion similarity measure between video sequences using multivariate time series modeling
The analysis and interpretation of video contents is an important component of modern vision applications such as surveillance, motion synthesis and web-based user interfaces. A requirement shared by these very different applications is the ability to learn statistical models of appearance and motion from a collection of videos, and then use them for recognizing actions or persons in a new video. Measuring the similarity and dissimilarity between video sequences is crucial in any video sequences analysis and decision-making process. Furthermore, many data analysis processes effectively deal with moving objects and need to compute the similarity between trajectories. In this paper, we propose a similarity measure for multivariate time series using the Euclidean distance based on Vector Autoregressive (VAR) models. The proposed approach allows us to identify and recognize actions of persons in video sequences. The performance of our methodology is tested on a real dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Disparity map estimation with neural network Weighted matrix distance metric for face images classification Exploring semantic roles of Web interface components Clustering approach for false alerts reducing in behavioral based intrusion detection systems Towards re-engineering Web applications into Semantic Web Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1