消除电磁散射内部共振问题的有效数学模型

Zhang Yunfeng, Zhou Zhongshan, Sun Zhi-guo, Wang Rong-zhu, Chen Zehuang
{"title":"消除电磁散射内部共振问题的有效数学模型","authors":"Zhang Yunfeng, Zhou Zhongshan, Sun Zhi-guo, Wang Rong-zhu, Chen Zehuang","doi":"10.1155/2015/724702","DOIUrl":null,"url":null,"abstract":"It is well-known that if an -field integral equation or an -field integral equation is applied alone in analysis of EM scattering from a conducting body, the solution to the equation will be either nonunique or unstable at the vicinity of a certain interior frequency. An effective math model is presented here, providing an easy way to deal with this situation. At the interior resonant frequencies, the surface current density is divided into two parts: an induced surface current caused by the incident field and a resonance surface current associated with the interior resonance mode. In this paper, the presented model, based on electric field integral equation and orthogonal modal theory, is used here to filter out resonant mode; therefore, unique and stable solution will be obtained. The proposed method possesses the merits of clarity in concept and simplicity in computation. A good agreement is achieved between the calculated results and those obtained by other methods in both 2D and 3D EM scattering.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Effective Math Model for Eliminating Interior Resonance Problems of EM Scattering\",\"authors\":\"Zhang Yunfeng, Zhou Zhongshan, Sun Zhi-guo, Wang Rong-zhu, Chen Zehuang\",\"doi\":\"10.1155/2015/724702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that if an -field integral equation or an -field integral equation is applied alone in analysis of EM scattering from a conducting body, the solution to the equation will be either nonunique or unstable at the vicinity of a certain interior frequency. An effective math model is presented here, providing an easy way to deal with this situation. At the interior resonant frequencies, the surface current density is divided into two parts: an induced surface current caused by the incident field and a resonance surface current associated with the interior resonance mode. In this paper, the presented model, based on electric field integral equation and orthogonal modal theory, is used here to filter out resonant mode; therefore, unique and stable solution will be obtained. The proposed method possesses the merits of clarity in concept and simplicity in computation. A good agreement is achieved between the calculated results and those obtained by other methods in both 2D and 3D EM scattering.\",\"PeriodicalId\":232251,\"journal\":{\"name\":\"International Journal of Microwave Science and Technology\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/724702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/724702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

众所周知,在分析导电体的电磁散射时,如果单独使用-场积分方程或-场积分方程,在某一内部频率附近,方程的解要么是非唯一的,要么是不稳定的。这里提出了一个有效的数学模型,提供了一种简单的方法来处理这种情况。在内部谐振频率下,表面电流密度分为两部分:由入射场引起的感应表面电流和与内部谐振模式相关的共振表面电流。本文采用基于电场积分方程和正交模态理论的模型来滤除谐振模态;因此,将得到唯一且稳定的解。该方法具有概念清晰、计算简单等优点。二维和三维电磁散射的计算结果与其他方法的计算结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Effective Math Model for Eliminating Interior Resonance Problems of EM Scattering
It is well-known that if an -field integral equation or an -field integral equation is applied alone in analysis of EM scattering from a conducting body, the solution to the equation will be either nonunique or unstable at the vicinity of a certain interior frequency. An effective math model is presented here, providing an easy way to deal with this situation. At the interior resonant frequencies, the surface current density is divided into two parts: an induced surface current caused by the incident field and a resonance surface current associated with the interior resonance mode. In this paper, the presented model, based on electric field integral equation and orthogonal modal theory, is used here to filter out resonant mode; therefore, unique and stable solution will be obtained. The proposed method possesses the merits of clarity in concept and simplicity in computation. A good agreement is achieved between the calculated results and those obtained by other methods in both 2D and 3D EM scattering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of Cracks in Concrete Structure Using Microwave Imaging Technique Reconfigurable and Tunable Filtenna for Cognitive LTE Femtocell Base Stations A Frequency Agile Semicircular Slot Antenna For Cognitive Radio System Ultrawideband Noise Radar Tomography: Principles, Simulation, and Experimental Validation Comparative Assessment of GaN as a Microwave Source with Si and SiC for Mixed Mode Operation at Submillimetre Wave Band of Frequency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1