具有倍频和可调相移的毫米波信号的光子产生

Conghui Zhang, Ruiying He, Xiaoyu Zhang, Yongfeng Wei
{"title":"具有倍频和可调相移的毫米波信号的光子产生","authors":"Conghui Zhang, Ruiying He, Xiaoyu Zhang, Yongfeng Wei","doi":"10.1109/ICFSP.2018.8552069","DOIUrl":null,"url":null,"abstract":"A novel photonic approach for generating a frequency-septupling or frequency-nonupling millimeter-wave (mm-wave) signal with tunable phase shift is proposed. Two fourth-order sidebands and an optical carrier are generated by using a dual-parallel Mach-Zehnder modulator (DPMZM). An optical bandstop filter (OBSF) is used to filter out optical carrier and a Mach-Zehnder interferometer (MZI) is employed to separate the +4th-order sideband and the −4th-order sideband. Then the −4th-order sideband is modulated by an optical phase modulator (PM), and the phase of the −4th-order sideband can be controlled by changing the dc voltage that drives the PM. The +4th-order sideband is modulated by the second DPMZM, then a +3rd-order sideband or +5th-order sideband is generated by controlling the dc voltage that drives the main-MZM of the second DPMZM. After an optical coupler and a photodiode (PD), a frequency-septupling or frequency-nonupling mm-wave signal with tunable phase shift is gotten. A simulation experiment is performed, and tunable 360-degree phase shift is realized, and the amplitude variation of the generated mm-wave signal is less than 0.2dB.","PeriodicalId":355222,"journal":{"name":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Photonic Generation of Millimeter-Wave Signals With Frequency-Multiplying and Tunable Phase Shift\",\"authors\":\"Conghui Zhang, Ruiying He, Xiaoyu Zhang, Yongfeng Wei\",\"doi\":\"10.1109/ICFSP.2018.8552069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel photonic approach for generating a frequency-septupling or frequency-nonupling millimeter-wave (mm-wave) signal with tunable phase shift is proposed. Two fourth-order sidebands and an optical carrier are generated by using a dual-parallel Mach-Zehnder modulator (DPMZM). An optical bandstop filter (OBSF) is used to filter out optical carrier and a Mach-Zehnder interferometer (MZI) is employed to separate the +4th-order sideband and the −4th-order sideband. Then the −4th-order sideband is modulated by an optical phase modulator (PM), and the phase of the −4th-order sideband can be controlled by changing the dc voltage that drives the PM. The +4th-order sideband is modulated by the second DPMZM, then a +3rd-order sideband or +5th-order sideband is generated by controlling the dc voltage that drives the main-MZM of the second DPMZM. After an optical coupler and a photodiode (PD), a frequency-septupling or frequency-nonupling mm-wave signal with tunable phase shift is gotten. A simulation experiment is performed, and tunable 360-degree phase shift is realized, and the amplitude variation of the generated mm-wave signal is less than 0.2dB.\",\"PeriodicalId\":355222,\"journal\":{\"name\":\"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFSP.2018.8552069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFSP.2018.8552069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种产生相移可调的七倍频或非七倍频毫米波信号的光子方法。采用双并行马赫-曾德尔调制器(DPMZM)产生了两个四阶边带和光载波。采用光带阻滤波器(OBSF)滤除光载波,采用马赫-曾德尔干涉仪(MZI)分离+4阶边带和- 4阶边带。然后用光相位调制器(PM)调制- 4阶边带,通过改变驱动PM的直流电压来控制- 4阶边带的相位。+4阶边带由第二个DPMZM调制,然后通过控制驱动第二个DPMZM的主mzm的直流电压产生+3阶或+5阶边带。通过光耦合器和光电二极管(PD),可以得到相移可调的七频或非七频毫米波信号。通过仿真实验,实现了360度可调相移,生成的毫米波信号幅度变化小于0.2dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photonic Generation of Millimeter-Wave Signals With Frequency-Multiplying and Tunable Phase Shift
A novel photonic approach for generating a frequency-septupling or frequency-nonupling millimeter-wave (mm-wave) signal with tunable phase shift is proposed. Two fourth-order sidebands and an optical carrier are generated by using a dual-parallel Mach-Zehnder modulator (DPMZM). An optical bandstop filter (OBSF) is used to filter out optical carrier and a Mach-Zehnder interferometer (MZI) is employed to separate the +4th-order sideband and the −4th-order sideband. Then the −4th-order sideband is modulated by an optical phase modulator (PM), and the phase of the −4th-order sideband can be controlled by changing the dc voltage that drives the PM. The +4th-order sideband is modulated by the second DPMZM, then a +3rd-order sideband or +5th-order sideband is generated by controlling the dc voltage that drives the main-MZM of the second DPMZM. After an optical coupler and a photodiode (PD), a frequency-septupling or frequency-nonupling mm-wave signal with tunable phase shift is gotten. A simulation experiment is performed, and tunable 360-degree phase shift is realized, and the amplitude variation of the generated mm-wave signal is less than 0.2dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-body Sensing and Signal Analysis for User Experience Recognition in Human-Machine Interaction Objective Approach of 3G/4G Networks Indoor RF Coverage Assessment Statistical Compressive Sensing for Efficient Signal Reconstruction and Classification Towards Empowering Cyber Attack Resiliency Using Steganography Filtering Nonuniformly Sampled Grid-Based Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1