一种基于近义词的语言语义表达方法

Mei-Chih Tsai, Chu-Ren Huang, Keh-Jiann Chen, K. Ahrens
{"title":"一种基于近义词的语言语义表达方法","authors":"Mei-Chih Tsai, Chu-Ren Huang, Keh-Jiann Chen, K. Ahrens","doi":"10.30019/IJCLCLP.199802.0004","DOIUrl":null,"url":null,"abstract":"In this paper we propose using the distributional differences in the syntactic patterns of near-synonyms to deduce the relevant components of verb meaning. Our method involves determining the distributional differences in syntactic patterns, deducing the semantic features from the syntactic phenomena, and testing the semantic features in new syntactic frames. We determine the distributional differences in syntactic patterns through the following five steps: First, we search for all instances of the verb in the corpus. Second, we classify each of these instances into its type of syntactic function. Third, we classify each of these instances into its argument structure type. Fourth, we determine the aspectual type that is associated with each verb. Lastly, we determine each verb's sentential type. Once the distributional differences have been determined, then the relevant semantic features are postulated. Our goal is to tease out the lexical semantic features as the explanation, and as the motivation of the syntactic contrasts.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"49 17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Towards a Representation of Verbal Semantics – An Approach Based on Near-Synonyms\",\"authors\":\"Mei-Chih Tsai, Chu-Ren Huang, Keh-Jiann Chen, K. Ahrens\",\"doi\":\"10.30019/IJCLCLP.199802.0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose using the distributional differences in the syntactic patterns of near-synonyms to deduce the relevant components of verb meaning. Our method involves determining the distributional differences in syntactic patterns, deducing the semantic features from the syntactic phenomena, and testing the semantic features in new syntactic frames. We determine the distributional differences in syntactic patterns through the following five steps: First, we search for all instances of the verb in the corpus. Second, we classify each of these instances into its type of syntactic function. Third, we classify each of these instances into its argument structure type. Fourth, we determine the aspectual type that is associated with each verb. Lastly, we determine each verb's sentential type. Once the distributional differences have been determined, then the relevant semantic features are postulated. Our goal is to tease out the lexical semantic features as the explanation, and as the motivation of the syntactic contrasts.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"49 17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30019/IJCLCLP.199802.0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.199802.0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文提出利用近义词句法模式的分布差异来推断动词意义的相关成分。我们的方法包括确定句法模式的分布差异,从句法现象推断语义特征,并在新的句法框架中测试语义特征。我们通过以下五个步骤确定句法模式的分布差异:首先,我们在语料库中搜索动词的所有实例。其次,我们将这些实例按其语法功能类型进行分类。第三,我们将每个实例按其参数结构类型进行分类。第四,我们确定与每个动词相关联的方面类型。最后,我们确定每个动词的句子类型。一旦确定了分布差异,就可以假设相关的语义特征。我们的目标是梳理出词汇语义特征,作为句法对比的解释和理据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Representation of Verbal Semantics – An Approach Based on Near-Synonyms
In this paper we propose using the distributional differences in the syntactic patterns of near-synonyms to deduce the relevant components of verb meaning. Our method involves determining the distributional differences in syntactic patterns, deducing the semantic features from the syntactic phenomena, and testing the semantic features in new syntactic frames. We determine the distributional differences in syntactic patterns through the following five steps: First, we search for all instances of the verb in the corpus. Second, we classify each of these instances into its type of syntactic function. Third, we classify each of these instances into its argument structure type. Fourth, we determine the aspectual type that is associated with each verb. Lastly, we determine each verb's sentential type. Once the distributional differences have been determined, then the relevant semantic features are postulated. Our goal is to tease out the lexical semantic features as the explanation, and as the motivation of the syntactic contrasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1