一种新的基本升压级联35级拓扑,可扩展到更高的级别

K. Varesi, M. Karimi, Paria Kargar
{"title":"一种新的基本升压级联35级拓扑,可扩展到更高的级别","authors":"K. Varesi, M. Karimi, Paria Kargar","doi":"10.1109/PEDSTC.2019.8697851","DOIUrl":null,"url":null,"abstract":"A new step-up Cascaded Multi-Level Inverter (CMLI) has been proposed in this paper. The proposed basic 35-level topology is composed of 4 DC sources, 2 capacitors, 2 diodes and 12 switches. The sum of input DC sources is 10Vdc, where the peak output voltage is 17Vdc. So, the proposed basic topology can act a step-up inverter with the gain of about 1.7. The proposed basic topology has simple structure. Since the voltage balancing of capacitors are done naturally, the control of proposed topology is also simple. The number of levels per number of components (such as DC sources, switches, gate driver circuits, diodes and capacitors) in proposed basic topology is higher than other similar converters. In this paper, the proposed basic topology has been introduced and its operational principles have been presented. Then, it has been compared with recently presented novel structures. The comparison results validate the advantages of proposed basic topology. Then, the proposed basic topology has been extended to act as a Multi-Level inverter. Finally, the appropriate performance of proposed basic topology has been verified by simulation results, extracted from PSCAD/EMTDC software.","PeriodicalId":296229,"journal":{"name":"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A New Basic Step-Up Cascaded 35-Level Topology Extendable To Higher Number of Levels\",\"authors\":\"K. Varesi, M. Karimi, Paria Kargar\",\"doi\":\"10.1109/PEDSTC.2019.8697851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new step-up Cascaded Multi-Level Inverter (CMLI) has been proposed in this paper. The proposed basic 35-level topology is composed of 4 DC sources, 2 capacitors, 2 diodes and 12 switches. The sum of input DC sources is 10Vdc, where the peak output voltage is 17Vdc. So, the proposed basic topology can act a step-up inverter with the gain of about 1.7. The proposed basic topology has simple structure. Since the voltage balancing of capacitors are done naturally, the control of proposed topology is also simple. The number of levels per number of components (such as DC sources, switches, gate driver circuits, diodes and capacitors) in proposed basic topology is higher than other similar converters. In this paper, the proposed basic topology has been introduced and its operational principles have been presented. Then, it has been compared with recently presented novel structures. The comparison results validate the advantages of proposed basic topology. Then, the proposed basic topology has been extended to act as a Multi-Level inverter. Finally, the appropriate performance of proposed basic topology has been verified by simulation results, extracted from PSCAD/EMTDC software.\",\"PeriodicalId\":296229,\"journal\":{\"name\":\"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDSTC.2019.8697851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC.2019.8697851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

提出了一种新的升压级联多级逆变器(CMLI)。提出的基本35电平拓扑由4个直流电源、2个电容器、2个二极管和12个开关组成。输入直流电源之和为10Vdc,其中输出峰值电压为17Vdc。因此,所提出的基本拓扑可以作为增益约为1.7的升压逆变器。所提出的基本拓扑结构简单。由于电容器的电压平衡是自然完成的,因此所提出的拓扑结构的控制也很简单。在提出的基本拓扑结构中,每数量元件(如直流电源、开关、栅极驱动电路、二极管和电容器)的电平数高于其他类似的变换器。本文介绍了所提出的基本拓扑结构,并给出了其工作原理。然后,将其与最近提出的新结构进行了比较。对比结果验证了所提基本拓扑的优越性。然后,将所提出的基本拓扑扩展为多级逆变器。最后,从PSCAD/EMTDC软件中提取的仿真结果验证了所提出的基本拓扑的适当性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Basic Step-Up Cascaded 35-Level Topology Extendable To Higher Number of Levels
A new step-up Cascaded Multi-Level Inverter (CMLI) has been proposed in this paper. The proposed basic 35-level topology is composed of 4 DC sources, 2 capacitors, 2 diodes and 12 switches. The sum of input DC sources is 10Vdc, where the peak output voltage is 17Vdc. So, the proposed basic topology can act a step-up inverter with the gain of about 1.7. The proposed basic topology has simple structure. Since the voltage balancing of capacitors are done naturally, the control of proposed topology is also simple. The number of levels per number of components (such as DC sources, switches, gate driver circuits, diodes and capacitors) in proposed basic topology is higher than other similar converters. In this paper, the proposed basic topology has been introduced and its operational principles have been presented. Then, it has been compared with recently presented novel structures. The comparison results validate the advantages of proposed basic topology. Then, the proposed basic topology has been extended to act as a Multi-Level inverter. Finally, the appropriate performance of proposed basic topology has been verified by simulation results, extracted from PSCAD/EMTDC software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic Smart Charging of Electric Vehicles for Residential Homes with PV Integration Reducing Variation of Switching Frequency in Finite-State Predictive Torque of three-Phase Induction Motor Static Modeling of the IDC-PFC to Solve DC Power Flow Equations of MT-HVDC Grids Employing the Newton-Raphson Method State Estimation for Sensorless Control of BLDC Machine with Particle Filter Algorithm Deviation Control in Comparison with DTC and FOC for SynRM Drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1