{"title":"基于群智特征融合R-CNN的双极化SAR舰船检测","authors":"Xiaowo Xu, Xiaoling Zhang, Tianjiao Zeng, Jun Shi, Zikang Shao, Tianwen Zhang","doi":"10.1109/RadarConf2351548.2023.10149675","DOIUrl":null,"url":null,"abstract":"Ship detection in synthetic aperture radar (SAR) images is a hot pot in the remote sensing (RS) field. However, most existing deep learning (DL)-based methods only focus on the single-polarization SAR ship detection without leveraging the rich dual-polarization SAR features, which poses a huge obstacle to the further model performance improvement. One problem for solution is how to fully excavate polarization characteristics using a convolution neural network (CNN). To address the above problem, we propose a novel group-wise feature fusion R-CNN (GWFF R-CNN) for dual-polarization SAR ship detection. Different from raw Faster R-CNN, GWFF R-CNN embeds a group-wise feature fusion module (GWFF module) into the subnetwork of Faster R-CNN, which enables group-wise feature fusion between polarization features and multi-scale ship features. Finally, the experiments on the dual-polarization SAR ship detection dataset (DSSDD) demonstrate that GWFF R-CNN can yield a ~4.1 F1 improvement and a ~2.9 average precision (AP) improvement, compared with Faster R-CNN.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group-Wise Feature Fusion R-CNN for Dual-Polarization SAR Ship Detection\",\"authors\":\"Xiaowo Xu, Xiaoling Zhang, Tianjiao Zeng, Jun Shi, Zikang Shao, Tianwen Zhang\",\"doi\":\"10.1109/RadarConf2351548.2023.10149675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ship detection in synthetic aperture radar (SAR) images is a hot pot in the remote sensing (RS) field. However, most existing deep learning (DL)-based methods only focus on the single-polarization SAR ship detection without leveraging the rich dual-polarization SAR features, which poses a huge obstacle to the further model performance improvement. One problem for solution is how to fully excavate polarization characteristics using a convolution neural network (CNN). To address the above problem, we propose a novel group-wise feature fusion R-CNN (GWFF R-CNN) for dual-polarization SAR ship detection. Different from raw Faster R-CNN, GWFF R-CNN embeds a group-wise feature fusion module (GWFF module) into the subnetwork of Faster R-CNN, which enables group-wise feature fusion between polarization features and multi-scale ship features. Finally, the experiments on the dual-polarization SAR ship detection dataset (DSSDD) demonstrate that GWFF R-CNN can yield a ~4.1 F1 improvement and a ~2.9 average precision (AP) improvement, compared with Faster R-CNN.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Group-Wise Feature Fusion R-CNN for Dual-Polarization SAR Ship Detection
Ship detection in synthetic aperture radar (SAR) images is a hot pot in the remote sensing (RS) field. However, most existing deep learning (DL)-based methods only focus on the single-polarization SAR ship detection without leveraging the rich dual-polarization SAR features, which poses a huge obstacle to the further model performance improvement. One problem for solution is how to fully excavate polarization characteristics using a convolution neural network (CNN). To address the above problem, we propose a novel group-wise feature fusion R-CNN (GWFF R-CNN) for dual-polarization SAR ship detection. Different from raw Faster R-CNN, GWFF R-CNN embeds a group-wise feature fusion module (GWFF module) into the subnetwork of Faster R-CNN, which enables group-wise feature fusion between polarization features and multi-scale ship features. Finally, the experiments on the dual-polarization SAR ship detection dataset (DSSDD) demonstrate that GWFF R-CNN can yield a ~4.1 F1 improvement and a ~2.9 average precision (AP) improvement, compared with Faster R-CNN.