高级智能控制器的在线模糊辨识

S. Blažič, I. Škrjanc, S. Gerkšič, G. Dolanc, S. Strmcnik, M. Hadjiski, A. Stathaki
{"title":"高级智能控制器的在线模糊辨识","authors":"S. Blažič, I. Škrjanc, S. Gerkšič, G. Dolanc, S. Strmcnik, M. Hadjiski, A. Stathaki","doi":"10.1109/ICIT.2003.1290781","DOIUrl":null,"url":null,"abstract":"The paper presents the identification issues of the self-tuning nonlinear controller ASPECT* (advanced control algorithms for programmable logic controllers). The controller is implemented on a simple PLC platform with an extra mathematical coprocessor but is intended for the advanced control of complex processes. The model of the controlled plant is obtained by means of experimental modelling using an online learning procedure that combines model identification with pre-and post-identification steps that provide reliable operation. It is shown that acceptable performance of the system is obtained despite the difficult conditions it may encounter, such as nonlinearity of the plant, slowly varying parameters of the plant, high level noise etc.","PeriodicalId":193510,"journal":{"name":"IEEE International Conference on Industrial Technology, 2003","volume":"500 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On-line fuzzy identification for advanced intelligent controller\",\"authors\":\"S. Blažič, I. Škrjanc, S. Gerkšič, G. Dolanc, S. Strmcnik, M. Hadjiski, A. Stathaki\",\"doi\":\"10.1109/ICIT.2003.1290781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the identification issues of the self-tuning nonlinear controller ASPECT* (advanced control algorithms for programmable logic controllers). The controller is implemented on a simple PLC platform with an extra mathematical coprocessor but is intended for the advanced control of complex processes. The model of the controlled plant is obtained by means of experimental modelling using an online learning procedure that combines model identification with pre-and post-identification steps that provide reliable operation. It is shown that acceptable performance of the system is obtained despite the difficult conditions it may encounter, such as nonlinearity of the plant, slowly varying parameters of the plant, high level noise etc.\",\"PeriodicalId\":193510,\"journal\":{\"name\":\"IEEE International Conference on Industrial Technology, 2003\",\"volume\":\"500 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Industrial Technology, 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2003.1290781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Industrial Technology, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2003.1290781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了自整定非线性控制器ASPECT*(可编程逻辑控制器的高级控制算法)的辨识问题。该控制器在一个简单的PLC平台上实现,带有一个额外的数学协处理器,但用于复杂过程的高级控制。被控对象的模型是通过使用在线学习过程的实验建模获得的,该过程将模型识别与提供可靠操作的前后识别步骤相结合。结果表明,尽管系统可能会遇到一些困难的情况,如对象的非线性、对象参数的缓慢变化、高噪声等,但系统仍能获得令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-line fuzzy identification for advanced intelligent controller
The paper presents the identification issues of the self-tuning nonlinear controller ASPECT* (advanced control algorithms for programmable logic controllers). The controller is implemented on a simple PLC platform with an extra mathematical coprocessor but is intended for the advanced control of complex processes. The model of the controlled plant is obtained by means of experimental modelling using an online learning procedure that combines model identification with pre-and post-identification steps that provide reliable operation. It is shown that acceptable performance of the system is obtained despite the difficult conditions it may encounter, such as nonlinearity of the plant, slowly varying parameters of the plant, high level noise etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interoperable technologies for automation Genetic algorithm approach for autonomous vehicles Development of a unified simulation methodology for electric networks using sliding modes Assist control for positioning task by flexible master-slave system Suppressing sensor lift-off effects on cracks signals in surface magnetic field measurement technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1