基因表达数据的模糊分类

G. Schaefer, T. Nakashima, Y. Yokota, H. Ishibuchi
{"title":"基因表达数据的模糊分类","authors":"G. Schaefer, T. Nakashima, Y. Yokota, H. Ishibuchi","doi":"10.1109/FUZZY.2007.4295519","DOIUrl":null,"url":null,"abstract":"Microarray expression studies measure, through a hybridisation process, the levels of genes expressed in biological samples. Knowledge gained from these studies is deemed increasingly important due to its potential of contributing to the understanding of fundamental questions in biology and clinical medicine. One important aspect of microarray expression analysis is the classification of the recorded samples which poses many challenges due to the vast number of recorded expression levels compared to the relatively small numbers of analysed samples. In this paper we show how fuzzy rule-based classification can be applied successfully to analyse gene expression data. The generated classifier consists of an ensemble of fuzzy if-then rules which together provide a reliable and accurate classification of the underlying data. Experimental results on several standard microarray datasets confirm the efficacy of the approach.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fuzzy Classification of Gene Expression Data\",\"authors\":\"G. Schaefer, T. Nakashima, Y. Yokota, H. Ishibuchi\",\"doi\":\"10.1109/FUZZY.2007.4295519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarray expression studies measure, through a hybridisation process, the levels of genes expressed in biological samples. Knowledge gained from these studies is deemed increasingly important due to its potential of contributing to the understanding of fundamental questions in biology and clinical medicine. One important aspect of microarray expression analysis is the classification of the recorded samples which poses many challenges due to the vast number of recorded expression levels compared to the relatively small numbers of analysed samples. In this paper we show how fuzzy rule-based classification can be applied successfully to analyse gene expression data. The generated classifier consists of an ensemble of fuzzy if-then rules which together provide a reliable and accurate classification of the underlying data. Experimental results on several standard microarray datasets confirm the efficacy of the approach.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

微阵列表达研究通过杂交过程测量生物样品中基因表达的水平。从这些研究中获得的知识被认为越来越重要,因为它有助于理解生物学和临床医学的基本问题。微阵列表达分析的一个重要方面是记录样本的分类,由于大量记录的表达水平与相对较少的分析样本相比,这带来了许多挑战。在本文中,我们展示了如何将基于模糊规则的分类成功地应用于基因表达数据分析。生成的分类器由一组模糊if-then规则组成,这些规则共同提供了对底层数据的可靠和准确的分类。在多个标准微阵列数据集上的实验结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy Classification of Gene Expression Data
Microarray expression studies measure, through a hybridisation process, the levels of genes expressed in biological samples. Knowledge gained from these studies is deemed increasingly important due to its potential of contributing to the understanding of fundamental questions in biology and clinical medicine. One important aspect of microarray expression analysis is the classification of the recorded samples which poses many challenges due to the vast number of recorded expression levels compared to the relatively small numbers of analysed samples. In this paper we show how fuzzy rule-based classification can be applied successfully to analyse gene expression data. The generated classifier consists of an ensemble of fuzzy if-then rules which together provide a reliable and accurate classification of the underlying data. Experimental results on several standard microarray datasets confirm the efficacy of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1