采用GaN、SiC-MOSFET和Si-IGBT开关的SST DAB电池散热片体积和重量优化的比较研究

H. Beiranvand, E. Rokrok, Marco Liserre
{"title":"采用GaN、SiC-MOSFET和Si-IGBT开关的SST DAB电池散热片体积和重量优化的比较研究","authors":"H. Beiranvand, E. Rokrok, Marco Liserre","doi":"10.1109/PEDSTC.2019.8697276","DOIUrl":null,"url":null,"abstract":"Heatsink is a passive component for transferring heat due to power losses from power devices such as semiconductor switches in power electronic converters. Emerging semiconductor technologies such as GaN and SiC MOSFETs present lower conduction and switching losses than conventional Si devices which can led to increase efficiency and reduction of weight and volume. In this paper, comparative evaluation of the heatsink weight and volume optimization based on Si IGBT, SiC MOSFET and GaN is done in a dual-active-bridge (DAB) as a building block in solid-state transformers. A 5 kW DAB converter as one of the 16 modules in an 80 kW ISOP converter is considered in optimization. Heatsink design is done for three semiconductor types. Results show that GaN achieves lowest power losses while its heatsink size and volume is limited by the thermal properties of the GaN chip.","PeriodicalId":296229,"journal":{"name":"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparative Study of Heatsink Volume and Weight Optimization in SST DAB cells Employing GaN, SiC-MOSFET and Si-IGBT Switches\",\"authors\":\"H. Beiranvand, E. Rokrok, Marco Liserre\",\"doi\":\"10.1109/PEDSTC.2019.8697276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heatsink is a passive component for transferring heat due to power losses from power devices such as semiconductor switches in power electronic converters. Emerging semiconductor technologies such as GaN and SiC MOSFETs present lower conduction and switching losses than conventional Si devices which can led to increase efficiency and reduction of weight and volume. In this paper, comparative evaluation of the heatsink weight and volume optimization based on Si IGBT, SiC MOSFET and GaN is done in a dual-active-bridge (DAB) as a building block in solid-state transformers. A 5 kW DAB converter as one of the 16 modules in an 80 kW ISOP converter is considered in optimization. Heatsink design is done for three semiconductor types. Results show that GaN achieves lowest power losses while its heatsink size and volume is limited by the thermal properties of the GaN chip.\",\"PeriodicalId\":296229,\"journal\":{\"name\":\"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDSTC.2019.8697276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC.2019.8697276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

散热器是一种无源元件,用于传递由于功率器件(如功率电子转换器中的半导体开关)的功率损失而产生的热量。新兴的半导体技术,如GaN和SiC mosfet,比传统的Si器件具有更低的传导和开关损耗,这可以提高效率,减少重量和体积。本文在固态变压器的双有源桥(DAB)中,对基于Si IGBT、SiC MOSFET和GaN的散热器重量和体积优化进行了比较评估。在80kw ISOP变换器的16个模块中考虑5kw DAB变换器作为一个模块进行优化。散热器设计是为三种半导体类型完成的。结果表明,GaN芯片的热性能限制了其散热片的尺寸和体积,但其功耗最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Study of Heatsink Volume and Weight Optimization in SST DAB cells Employing GaN, SiC-MOSFET and Si-IGBT Switches
Heatsink is a passive component for transferring heat due to power losses from power devices such as semiconductor switches in power electronic converters. Emerging semiconductor technologies such as GaN and SiC MOSFETs present lower conduction and switching losses than conventional Si devices which can led to increase efficiency and reduction of weight and volume. In this paper, comparative evaluation of the heatsink weight and volume optimization based on Si IGBT, SiC MOSFET and GaN is done in a dual-active-bridge (DAB) as a building block in solid-state transformers. A 5 kW DAB converter as one of the 16 modules in an 80 kW ISOP converter is considered in optimization. Heatsink design is done for three semiconductor types. Results show that GaN achieves lowest power losses while its heatsink size and volume is limited by the thermal properties of the GaN chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic Smart Charging of Electric Vehicles for Residential Homes with PV Integration Reducing Variation of Switching Frequency in Finite-State Predictive Torque of three-Phase Induction Motor Static Modeling of the IDC-PFC to Solve DC Power Flow Equations of MT-HVDC Grids Employing the Newton-Raphson Method State Estimation for Sensorless Control of BLDC Machine with Particle Filter Algorithm Deviation Control in Comparison with DTC and FOC for SynRM Drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1