软件项目需求收集阶段的预测风险模型

B. O. Akumba, S. Otor, I. Agaji, Barnabas T. Akumba
{"title":"软件项目需求收集阶段的预测风险模型","authors":"B. O. Akumba, S. Otor, I. Agaji, Barnabas T. Akumba","doi":"10.38124/ijisrt20jun066","DOIUrl":null,"url":null,"abstract":"The initial stage of the software development lifecycle is the requirement gathering and analysis phase. Predicting risk at this phase is very crucial because cost and efforts can be saved while improving the quality and efficiency of the software to be developed. The datasets for software requirements risk prediction have been adopted in this paper to predict the risk levels across the software projects and to ascertain the attributes that contribute to the recognized risk in the software projects. A supervised machine learning technique was used to predict the risk across the projects using Naïve Bayes Classifier technique. The model was able to predict the risks across the projects and the performance metrics of the risk attributes were evaluated. The model predicted four (4) as Catastrophic, eleven (11) as High, eighteen (18) as Moderate, thirty-three (33) as Low and seven (7) as insignificant. The overall confusion matrix statistics on the risk levels prediction by the model had accuracy to be 98% with confidence interval (CI) of 95% and Kappa 97%.","PeriodicalId":355617,"journal":{"name":"International Journal of Innovative Science and Research Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Predictive Risk Model for Software Projects’\\nRequirement Gathering Phase\",\"authors\":\"B. O. Akumba, S. Otor, I. Agaji, Barnabas T. Akumba\",\"doi\":\"10.38124/ijisrt20jun066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The initial stage of the software development lifecycle is the requirement gathering and analysis phase. Predicting risk at this phase is very crucial because cost and efforts can be saved while improving the quality and efficiency of the software to be developed. The datasets for software requirements risk prediction have been adopted in this paper to predict the risk levels across the software projects and to ascertain the attributes that contribute to the recognized risk in the software projects. A supervised machine learning technique was used to predict the risk across the projects using Naïve Bayes Classifier technique. The model was able to predict the risks across the projects and the performance metrics of the risk attributes were evaluated. The model predicted four (4) as Catastrophic, eleven (11) as High, eighteen (18) as Moderate, thirty-three (33) as Low and seven (7) as insignificant. The overall confusion matrix statistics on the risk levels prediction by the model had accuracy to be 98% with confidence interval (CI) of 95% and Kappa 97%.\",\"PeriodicalId\":355617,\"journal\":{\"name\":\"International Journal of Innovative Science and Research Technology\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Science and Research Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38124/ijisrt20jun066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Science and Research Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38124/ijisrt20jun066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

软件开发生命周期的初始阶段是需求收集和分析阶段。在这个阶段预测风险是非常重要的,因为在提高要开发的软件的质量和效率的同时可以节省成本和努力。本文采用软件需求风险预测的数据集来预测跨软件项目的风险水平,并确定导致软件项目中可识别风险的属性。使用Naïve贝叶斯分类器技术,使用监督机器学习技术来预测项目的风险。该模型能够预测跨项目的风险,并且评估了风险属性的性能度量。该模型预测4(4)为灾难性,11(11)为高,18(18)为中度,33(33)为低,7(7)为无关紧要。模型预测风险水平的总体混淆矩阵统计准确率为98%,置信区间(CI)为95%,Kappa为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Predictive Risk Model for Software Projects’ Requirement Gathering Phase
The initial stage of the software development lifecycle is the requirement gathering and analysis phase. Predicting risk at this phase is very crucial because cost and efforts can be saved while improving the quality and efficiency of the software to be developed. The datasets for software requirements risk prediction have been adopted in this paper to predict the risk levels across the software projects and to ascertain the attributes that contribute to the recognized risk in the software projects. A supervised machine learning technique was used to predict the risk across the projects using Naïve Bayes Classifier technique. The model was able to predict the risks across the projects and the performance metrics of the risk attributes were evaluated. The model predicted four (4) as Catastrophic, eleven (11) as High, eighteen (18) as Moderate, thirty-three (33) as Low and seven (7) as insignificant. The overall confusion matrix statistics on the risk levels prediction by the model had accuracy to be 98% with confidence interval (CI) of 95% and Kappa 97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume 5 - 2020, Issue 10 - October Blood Pressure and Control Factor in Hypertensives Monitored at the Referral Hopsital in Boma. Democratic Repubic of the Congo The Role of Social Responsibility Accounting Impact in Supporting Competitive Advantage for Industrial Establishment (Filed Study on the Company Matthew Petroleum) Role of the External Auditor in Reducing Tax Evasion (Field Study- Tax Chamber of Sudan) Volume 5 - 2020, Issue 9 - September
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1