基于神经网络的任务空间机器人跟踪

G. Feng, C. K. Chak
{"title":"基于神经网络的任务空间机器人跟踪","authors":"G. Feng, C. K. Chak","doi":"10.1109/ICNN.1994.374684","DOIUrl":null,"url":null,"abstract":"This paper considers tracking control of robots in task space. A new control scheme is proposed based on a kind of conventional controller and a neural network based compensating controller. This scheme takes advantages of simplicity of the model based control approach and uses the neural network controller to compensate for the robot modelling uncertainties. The neural network is trained online based on Lyapunov theory and thus its convergence is guaranteed.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Robot tracking in task space using neural networks\",\"authors\":\"G. Feng, C. K. Chak\",\"doi\":\"10.1109/ICNN.1994.374684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers tracking control of robots in task space. A new control scheme is proposed based on a kind of conventional controller and a neural network based compensating controller. This scheme takes advantages of simplicity of the model based control approach and uses the neural network controller to compensate for the robot modelling uncertainties. The neural network is trained online based on Lyapunov theory and thus its convergence is guaranteed.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

研究了机器人在任务空间中的跟踪控制问题。提出了一种基于传统控制器和基于神经网络的补偿控制器的新型控制方案。该方案利用基于模型的控制方法的简单性,利用神经网络控制器对机器人建模的不确定性进行补偿。基于李雅普诺夫理论对神经网络进行在线训练,保证了神经网络的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robot tracking in task space using neural networks
This paper considers tracking control of robots in task space. A new control scheme is proposed based on a kind of conventional controller and a neural network based compensating controller. This scheme takes advantages of simplicity of the model based control approach and uses the neural network controller to compensate for the robot modelling uncertainties. The neural network is trained online based on Lyapunov theory and thus its convergence is guaranteed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1