{"title":"先进的片上多晶硅CMOS模拟和驱动电路技术,用于智能离散器件","authors":"T. Matsudai, T. Kojima, A. Nakagawa","doi":"10.1109/ISPSD.2000.856780","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the analog and driver circuit performances of 0.8 /spl mu/m gate length polysilicon CMOS fabricated on a thermal oxide film. Especially, we report the capability of load short-circuit protection circuit and high-side driver circuit. For the first time, it is found that the improved polysilicon analog circuits works sufficiently rapidly to protect high voltage power devices. It was experimentally confirmed that a 20 A/600 V high power IGBT can be driven and safely protected from load short-circuit failure by the polysilicon circuits within 200 nsec. It was also shown that a polysilicon high-side driver circuit with a charge pump successfully switched on a 25 A/60 V MOSFET within 130 /spl mu/sec.","PeriodicalId":260241,"journal":{"name":"12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced on-chip polysilicon CMOS analog and driver circuit technology for intelligent discrete devices\",\"authors\":\"T. Matsudai, T. Kojima, A. Nakagawa\",\"doi\":\"10.1109/ISPSD.2000.856780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the analog and driver circuit performances of 0.8 /spl mu/m gate length polysilicon CMOS fabricated on a thermal oxide film. Especially, we report the capability of load short-circuit protection circuit and high-side driver circuit. For the first time, it is found that the improved polysilicon analog circuits works sufficiently rapidly to protect high voltage power devices. It was experimentally confirmed that a 20 A/600 V high power IGBT can be driven and safely protected from load short-circuit failure by the polysilicon circuits within 200 nsec. It was also shown that a polysilicon high-side driver circuit with a charge pump successfully switched on a 25 A/60 V MOSFET within 130 /spl mu/sec.\",\"PeriodicalId\":260241,\"journal\":{\"name\":\"12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.2000.856780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2000.856780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了在热氧化膜上制备的0.8 /spl μ m栅极长多晶硅CMOS的模拟电路和驱动电路的性能。重点介绍了负载短路保护电路和高侧驱动电路的性能。首次发现改进的多晶硅模拟电路工作速度足够快,可以保护高压电源器件。实验证实,该多晶硅电路可在200nsec内驱动20 a /600 V大功率IGBT,并能安全保护负载不发生短路故障。实验还表明,带电荷泵的多晶硅高侧驱动电路在130 /spl mu/sec内成功地导通了25 a /60 V MOSFET。
Advanced on-chip polysilicon CMOS analog and driver circuit technology for intelligent discrete devices
In this paper, we investigate the analog and driver circuit performances of 0.8 /spl mu/m gate length polysilicon CMOS fabricated on a thermal oxide film. Especially, we report the capability of load short-circuit protection circuit and high-side driver circuit. For the first time, it is found that the improved polysilicon analog circuits works sufficiently rapidly to protect high voltage power devices. It was experimentally confirmed that a 20 A/600 V high power IGBT can be driven and safely protected from load short-circuit failure by the polysilicon circuits within 200 nsec. It was also shown that a polysilicon high-side driver circuit with a charge pump successfully switched on a 25 A/60 V MOSFET within 130 /spl mu/sec.