{"title":"投资组合Rho-Presentativity","authors":"Tristan Froidure, Khalid Jalalzai, Yves Choueifaty","doi":"10.2139/ssrn.2971867","DOIUrl":null,"url":null,"abstract":"Given an investment universe, we consider the vector [Formula: see text] of correlations of all assets to a portfolio with weights [Formula: see text]. This vector offers a representation equivalent to [Formula: see text] and leads to the notion of [Formula: see text]-presentative portfolio, that has a positive correlation, or exposure, to all assets. This class encompasses well-known portfolios, and complements the notion of representative portfolio, that has positive amounts invested in all assets (e.g. the market-cap index). We then introduce the concept of maximally [Formula: see text]-presentative portfolios, that maximize under no particular constraint an aggregate exposure [Formula: see text] to all assets, as measured by some symmetric, increasing and concave real-valued function [Formula: see text]. A basic characterization is established and it is shown that these portfolios are long-only, diversified and form a finite union of polytopes that satisfies a local regularity condition with respect to changes of the covariance matrix of the assets. Despite its small size, this set encompasses many well-known and possibly constrained long-only portfolios, bringing them together in a common framework. This also allowed us characterizing explicitly the impact of maximum weight constraints on the minimum variance portfolio. Finally, several theoretical and numerical applications illustrate our results.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Portfolio Rho-Presentativity\",\"authors\":\"Tristan Froidure, Khalid Jalalzai, Yves Choueifaty\",\"doi\":\"10.2139/ssrn.2971867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an investment universe, we consider the vector [Formula: see text] of correlations of all assets to a portfolio with weights [Formula: see text]. This vector offers a representation equivalent to [Formula: see text] and leads to the notion of [Formula: see text]-presentative portfolio, that has a positive correlation, or exposure, to all assets. This class encompasses well-known portfolios, and complements the notion of representative portfolio, that has positive amounts invested in all assets (e.g. the market-cap index). We then introduce the concept of maximally [Formula: see text]-presentative portfolios, that maximize under no particular constraint an aggregate exposure [Formula: see text] to all assets, as measured by some symmetric, increasing and concave real-valued function [Formula: see text]. A basic characterization is established and it is shown that these portfolios are long-only, diversified and form a finite union of polytopes that satisfies a local regularity condition with respect to changes of the covariance matrix of the assets. Despite its small size, this set encompasses many well-known and possibly constrained long-only portfolios, bringing them together in a common framework. This also allowed us characterizing explicitly the impact of maximum weight constraints on the minimum variance portfolio. Finally, several theoretical and numerical applications illustrate our results.\",\"PeriodicalId\":299310,\"journal\":{\"name\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2971867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2971867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given an investment universe, we consider the vector [Formula: see text] of correlations of all assets to a portfolio with weights [Formula: see text]. This vector offers a representation equivalent to [Formula: see text] and leads to the notion of [Formula: see text]-presentative portfolio, that has a positive correlation, or exposure, to all assets. This class encompasses well-known portfolios, and complements the notion of representative portfolio, that has positive amounts invested in all assets (e.g. the market-cap index). We then introduce the concept of maximally [Formula: see text]-presentative portfolios, that maximize under no particular constraint an aggregate exposure [Formula: see text] to all assets, as measured by some symmetric, increasing and concave real-valued function [Formula: see text]. A basic characterization is established and it is shown that these portfolios are long-only, diversified and form a finite union of polytopes that satisfies a local regularity condition with respect to changes of the covariance matrix of the assets. Despite its small size, this set encompasses many well-known and possibly constrained long-only portfolios, bringing them together in a common framework. This also allowed us characterizing explicitly the impact of maximum weight constraints on the minimum variance portfolio. Finally, several theoretical and numerical applications illustrate our results.