利用高阻抗超导谐振器实现Ge/Si核/壳纳米线双量子点的电荷传感

J. Ungerer, P. Chevalier Kwon, T. Patlatiuk, J. Ridderbos, A. Kononov, D. Sarmah, E. Bakkers, D. Zumbühl, C. Schönenberger
{"title":"利用高阻抗超导谐振器实现Ge/Si核/壳纳米线双量子点的电荷传感","authors":"J. Ungerer, P. Chevalier Kwon, T. Patlatiuk, J. Ridderbos, A. Kononov, D. Sarmah, E. Bakkers, D. Zumbühl, C. Schönenberger","doi":"10.1088/2633-4356/ace2a6","DOIUrl":null,"url":null,"abstract":"\n Spin qubits in germanium are a promising contender for scalable quantum computers. Reading out of the spin and charge configuration of quantum dots formed in Ge/Si core/shell nanowires is typically performed by measuring the current through the nanowire. Here, we demonstrate a more versatile approach on investigating the charge configuration of these quantum dots. We employ a high-impedance, magnetic-field resilient superconducting resonator based on NbTiN and couple it to a double quantum dot in a Ge/Si nanowire. This allows us to dispersively detect charging effects, even in the regime where the nanowire is fully pinched off and no direct current is present. Furthermore, by increasing the electro-chemical potential far beyond the nanowire pinch-off, we observe indications for depleting the last hole in the quantum dot by using the second quantum dot as a charge sensor. This work opens the door for dispersive readout and future spin-photon coupling in this system.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Charge-sensing of a Ge/Si core/shell nanowire double quantum dot using a high-impedance superconducting resonator\",\"authors\":\"J. Ungerer, P. Chevalier Kwon, T. Patlatiuk, J. Ridderbos, A. Kononov, D. Sarmah, E. Bakkers, D. Zumbühl, C. Schönenberger\",\"doi\":\"10.1088/2633-4356/ace2a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Spin qubits in germanium are a promising contender for scalable quantum computers. Reading out of the spin and charge configuration of quantum dots formed in Ge/Si core/shell nanowires is typically performed by measuring the current through the nanowire. Here, we demonstrate a more versatile approach on investigating the charge configuration of these quantum dots. We employ a high-impedance, magnetic-field resilient superconducting resonator based on NbTiN and couple it to a double quantum dot in a Ge/Si nanowire. This allows us to dispersively detect charging effects, even in the regime where the nanowire is fully pinched off and no direct current is present. Furthermore, by increasing the electro-chemical potential far beyond the nanowire pinch-off, we observe indications for depleting the last hole in the quantum dot by using the second quantum dot as a charge sensor. This work opens the door for dispersive readout and future spin-photon coupling in this system.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/ace2a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/ace2a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

锗中的自旋量子比特是可扩展量子计算机的有力竞争者。通常通过测量通过纳米线的电流来读取Ge/Si核/壳纳米线中形成的量子点的自旋和电荷配置。在这里,我们展示了一种更通用的方法来研究这些量子点的电荷配置。我们采用了一种基于NbTiN的高阻抗磁场弹性超导谐振器,并将其耦合到Ge/Si纳米线中的双量子点上。这使我们能够分散地检测充电效应,即使在纳米线完全被掐断且没有直流电存在的情况下也是如此。此外,通过增加电化学电位远远超过纳米线的掐断,我们观察到使用第二个量子点作为电荷传感器耗尽量子点中最后一个空穴的迹象。这项工作为该系统的色散读出和未来的自旋光子耦合打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charge-sensing of a Ge/Si core/shell nanowire double quantum dot using a high-impedance superconducting resonator
Spin qubits in germanium are a promising contender for scalable quantum computers. Reading out of the spin and charge configuration of quantum dots formed in Ge/Si core/shell nanowires is typically performed by measuring the current through the nanowire. Here, we demonstrate a more versatile approach on investigating the charge configuration of these quantum dots. We employ a high-impedance, magnetic-field resilient superconducting resonator based on NbTiN and couple it to a double quantum dot in a Ge/Si nanowire. This allows us to dispersively detect charging effects, even in the regime where the nanowire is fully pinched off and no direct current is present. Furthermore, by increasing the electro-chemical potential far beyond the nanowire pinch-off, we observe indications for depleting the last hole in the quantum dot by using the second quantum dot as a charge sensor. This work opens the door for dispersive readout and future spin-photon coupling in this system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen-vacancy centers in diamond: discovery of additional electronic states Fabrication of tips for scanning probe magnetometry by diamond growth GaAs-on-insulator ridge waveguide nanobeam cavities with integrated InAs quantum dots Quantum materials engineering by structured cavity vacuum fluctuations Structural formation yield of GeV centers from implanted Ge in diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1