机器人共同表示建模:最先进的、开放的问题,以及作为可能框架的预测学习

M. Kirtay, Olga A. Wudarczyk, D. Pischedda, A. Kuhlen, R. A. Rahman, J. Haynes, V. Hafner
{"title":"机器人共同表示建模:最先进的、开放的问题,以及作为可能框架的预测学习","authors":"M. Kirtay, Olga A. Wudarczyk, D. Pischedda, A. Kuhlen, R. A. Rahman, J. Haynes, V. Hafner","doi":"10.1109/ICDL-EpiRob48136.2020.9278031","DOIUrl":null,"url":null,"abstract":"Robots are getting increasingly more present in many spheres of human life, making the need for robots that can successfully engage in natural social interactions with humans paramount. Successful human-robot interaction could be achieved more effectively if robots could act predictably and could predict the humans' actions. If robots could represent human partners and generate behaviors that are in line with the partners' expectations based on human's mental models of interdependent action, human agents would be able to apply predictive and adaptive mechanisms acquired in human interactions to interact with robots effectively. How could robots be predictable and be capable of predicting human behavior? We propose that this could be achieved by having an internal representation of both oneself and the other agent, that is by equipping the robot with the ability to co-represent. Here, co-representation refers to the representation of the partner's actions alongside one's own actions. Although co-representation constitutes an essential process for successful human social interaction, as it supports understanding of others' actions, to date co-representation processes have only scarcely been integrated into robotic platforms. We highlight the state-of-the-art findings on co-representation in social robotics, discuss current research limitations and open issues for creating computational models of co-representation in robots, and put forward the idea that predictive learning might constitute a particularly promising framework to build models of co-representing robots. Overall, in this article, we offer an integrated view of the state-of-the-art findings in robotics literature on co-representation and outline directions for future research, with the aim to boost success in building robots equipped with co-representation models fit for smooth social interactions.","PeriodicalId":114948,"journal":{"name":"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modeling robot co-representation: state-of-the-art, open issues, and predictive learning as a possible framework\",\"authors\":\"M. Kirtay, Olga A. Wudarczyk, D. Pischedda, A. Kuhlen, R. A. Rahman, J. Haynes, V. Hafner\",\"doi\":\"10.1109/ICDL-EpiRob48136.2020.9278031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robots are getting increasingly more present in many spheres of human life, making the need for robots that can successfully engage in natural social interactions with humans paramount. Successful human-robot interaction could be achieved more effectively if robots could act predictably and could predict the humans' actions. If robots could represent human partners and generate behaviors that are in line with the partners' expectations based on human's mental models of interdependent action, human agents would be able to apply predictive and adaptive mechanisms acquired in human interactions to interact with robots effectively. How could robots be predictable and be capable of predicting human behavior? We propose that this could be achieved by having an internal representation of both oneself and the other agent, that is by equipping the robot with the ability to co-represent. Here, co-representation refers to the representation of the partner's actions alongside one's own actions. Although co-representation constitutes an essential process for successful human social interaction, as it supports understanding of others' actions, to date co-representation processes have only scarcely been integrated into robotic platforms. We highlight the state-of-the-art findings on co-representation in social robotics, discuss current research limitations and open issues for creating computational models of co-representation in robots, and put forward the idea that predictive learning might constitute a particularly promising framework to build models of co-representing robots. Overall, in this article, we offer an integrated view of the state-of-the-art findings in robotics literature on co-representation and outline directions for future research, with the aim to boost success in building robots equipped with co-representation models fit for smooth social interactions.\",\"PeriodicalId\":114948,\"journal\":{\"name\":\"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

机器人越来越多地出现在人类生活的许多领域,因此对能够成功地与人类进行自然社会互动的机器人的需求至关重要。如果机器人可以预测人类的行为,并且能够预测人类的行为,那么成功的人机交互就可以更有效地实现。如果机器人能够代表人类伴侣,并基于人类相互依存的心理模型产生符合伴侣期望的行为,那么人类代理将能够应用在人类互动中获得的预测和自适应机制来有效地与机器人互动。机器人如何能够被预测,并能够预测人类的行为?我们建议,这可以通过拥有自己和其他代理的内部表示来实现,也就是说,通过为机器人配备共同表示的能力。在这里,共同表征指的是将合作伙伴的行为与自己的行为一起表征。虽然共同代表是成功的人类社会互动的必要过程,因为它支持对他人行为的理解,但迄今为止,共同代表过程几乎没有集成到机器人平台中。我们强调了社交机器人中共同表征的最新研究成果,讨论了当前研究的局限性和在机器人中创建共同表征计算模型的开放问题,并提出了预测学习可能构成一个特别有前途的框架来构建共同表征机器人模型的想法。总的来说,在这篇文章中,我们提供了一个关于共同表示的机器人文献中最先进的发现的综合观点,并概述了未来研究的方向,目的是促进成功构建具有适合顺利社会互动的共同表示模型的机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling robot co-representation: state-of-the-art, open issues, and predictive learning as a possible framework
Robots are getting increasingly more present in many spheres of human life, making the need for robots that can successfully engage in natural social interactions with humans paramount. Successful human-robot interaction could be achieved more effectively if robots could act predictably and could predict the humans' actions. If robots could represent human partners and generate behaviors that are in line with the partners' expectations based on human's mental models of interdependent action, human agents would be able to apply predictive and adaptive mechanisms acquired in human interactions to interact with robots effectively. How could robots be predictable and be capable of predicting human behavior? We propose that this could be achieved by having an internal representation of both oneself and the other agent, that is by equipping the robot with the ability to co-represent. Here, co-representation refers to the representation of the partner's actions alongside one's own actions. Although co-representation constitutes an essential process for successful human social interaction, as it supports understanding of others' actions, to date co-representation processes have only scarcely been integrated into robotic platforms. We highlight the state-of-the-art findings on co-representation in social robotics, discuss current research limitations and open issues for creating computational models of co-representation in robots, and put forward the idea that predictive learning might constitute a particularly promising framework to build models of co-representing robots. Overall, in this article, we offer an integrated view of the state-of-the-art findings in robotics literature on co-representation and outline directions for future research, with the aim to boost success in building robots equipped with co-representation models fit for smooth social interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-level representations through unconstrained sensorimotor learning Language Acquisition with Echo State Networks: Towards Unsupervised Learning Picture completion reveals developmental change in representational drawing ability: An analysis using a convolutional neural network Fast Developmental Stereo-Disparity Detectors Modeling robot co-representation: state-of-the-art, open issues, and predictive learning as a possible framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1