I. Reutsky, D. Ben-Shimol, N. Farah, S. Levenberg, S. Shoham
{"title":"表达视网膜神经节细胞的通道视紫红质II的模式光学激活","authors":"I. Reutsky, D. Ben-Shimol, N. Farah, S. Levenberg, S. Shoham","doi":"10.1109/CNE.2007.369609","DOIUrl":null,"url":null,"abstract":"Neuroprosthetic retinal interfaces depend upon the ability to bypass the damaged photoreceptor layer and directly activate populations of retinal ganglion cells (RGCs). Current approaches to this task largely rely on electrode array implants. We are pursuing an alternative, light-based approach towards direct activation of the RGCs, by artificially causing them to express Channelrhodopsin II (ChR2), a light-gated cation channel. In addition to being non-contact, optical techniques lend themselves relatively easily to a variety of technologies for achieving patterned stimulation with high temporal and spatial resolution. In early studies, we are using viral vectors to obtain wide spread expression of ChR2 in rat retinas, and have developed a system capable of controlled large-scale, flexible stimulation of the retinal tissue with high temporal accuracy through adaptations of video projection technology. Finally, we demonstrate a PC-based wearable system that can perform the image processing transformations required for optical retinal neuroprosthetic interfaces in real time.","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Patterned optical activation of Channelrhodopsin II expressing retinal ganglion cells\",\"authors\":\"I. Reutsky, D. Ben-Shimol, N. Farah, S. Levenberg, S. Shoham\",\"doi\":\"10.1109/CNE.2007.369609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuroprosthetic retinal interfaces depend upon the ability to bypass the damaged photoreceptor layer and directly activate populations of retinal ganglion cells (RGCs). Current approaches to this task largely rely on electrode array implants. We are pursuing an alternative, light-based approach towards direct activation of the RGCs, by artificially causing them to express Channelrhodopsin II (ChR2), a light-gated cation channel. In addition to being non-contact, optical techniques lend themselves relatively easily to a variety of technologies for achieving patterned stimulation with high temporal and spatial resolution. In early studies, we are using viral vectors to obtain wide spread expression of ChR2 in rat retinas, and have developed a system capable of controlled large-scale, flexible stimulation of the retinal tissue with high temporal accuracy through adaptations of video projection technology. Finally, we demonstrate a PC-based wearable system that can perform the image processing transformations required for optical retinal neuroprosthetic interfaces in real time.\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Patterned optical activation of Channelrhodopsin II expressing retinal ganglion cells
Neuroprosthetic retinal interfaces depend upon the ability to bypass the damaged photoreceptor layer and directly activate populations of retinal ganglion cells (RGCs). Current approaches to this task largely rely on electrode array implants. We are pursuing an alternative, light-based approach towards direct activation of the RGCs, by artificially causing them to express Channelrhodopsin II (ChR2), a light-gated cation channel. In addition to being non-contact, optical techniques lend themselves relatively easily to a variety of technologies for achieving patterned stimulation with high temporal and spatial resolution. In early studies, we are using viral vectors to obtain wide spread expression of ChR2 in rat retinas, and have developed a system capable of controlled large-scale, flexible stimulation of the retinal tissue with high temporal accuracy through adaptations of video projection technology. Finally, we demonstrate a PC-based wearable system that can perform the image processing transformations required for optical retinal neuroprosthetic interfaces in real time.