相控阵雷达重尾干扰抑制的变步长lmp算法

Y. R. Zheng, Tiange Shao
{"title":"相控阵雷达重尾干扰抑制的变步长lmp算法","authors":"Y. R. Zheng, Tiange Shao","doi":"10.1109/AERO.2009.4839472","DOIUrl":null,"url":null,"abstract":"A new variable step-size Least Mean p-norm (VSS-LMP) algorithm is proposed for phased array radar application with space-time adaptive processing to combat heavy-tailed non-Gaussian clutters. The algorithms automatically change the step size according to the estimated p-th and (2p - 2)-th moments of the error, where 1 ≤ p ≤ 2. The algorithm is evaluated via a space-slow-time STAP example and the excess Mean Square Error (MSE) and misadjustment results show that the proposed VSS-LMP converges fast and reaches lower steady-state error than the fixed stepsize LMP. It also provides a better compromise between convergence speed and low steady state error than existing VSS Least Mean Square (LMS) algorithms in both Gaussian and Compound K clutter environments.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A variable step-size lmp algorithm for heavy-tailed interference suppression in phased array radar\",\"authors\":\"Y. R. Zheng, Tiange Shao\",\"doi\":\"10.1109/AERO.2009.4839472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new variable step-size Least Mean p-norm (VSS-LMP) algorithm is proposed for phased array radar application with space-time adaptive processing to combat heavy-tailed non-Gaussian clutters. The algorithms automatically change the step size according to the estimated p-th and (2p - 2)-th moments of the error, where 1 ≤ p ≤ 2. The algorithm is evaluated via a space-slow-time STAP example and the excess Mean Square Error (MSE) and misadjustment results show that the proposed VSS-LMP converges fast and reaches lower steady-state error than the fixed stepsize LMP. It also provides a better compromise between convergence speed and low steady state error than existing VSS Least Mean Square (LMS) algorithms in both Gaussian and Compound K clutter environments.\",\"PeriodicalId\":117250,\"journal\":{\"name\":\"2009 IEEE Aerospace conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Aerospace conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2009.4839472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对相控阵雷达的重尾非高斯杂波,提出了一种新的变步长最小均值p-范数(VSS-LMP)算法。算法根据估计误差的p阶矩和(2p - 2)阶矩自动改变步长,其中1≤p≤2。通过空间-慢时间STAP实例对该算法进行了验证,结果表明,该算法收敛速度快,稳态误差小于固定步长LMP。在高斯杂波和复合K杂波环境下,与现有的VSS最小均方(LMS)算法相比,它在收敛速度和低稳态误差之间提供了更好的折衷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A variable step-size lmp algorithm for heavy-tailed interference suppression in phased array radar
A new variable step-size Least Mean p-norm (VSS-LMP) algorithm is proposed for phased array radar application with space-time adaptive processing to combat heavy-tailed non-Gaussian clutters. The algorithms automatically change the step size according to the estimated p-th and (2p - 2)-th moments of the error, where 1 ≤ p ≤ 2. The algorithm is evaluated via a space-slow-time STAP example and the excess Mean Square Error (MSE) and misadjustment results show that the proposed VSS-LMP converges fast and reaches lower steady-state error than the fixed stepsize LMP. It also provides a better compromise between convergence speed and low steady state error than existing VSS Least Mean Square (LMS) algorithms in both Gaussian and Compound K clutter environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Wiener filters for small-target radiometric restoration Hop-by-hop transport for satellite networks Creating virtual sensors using learning based super resolution and data fusion Autonomous robot navigation using advanced motion primitives Development of a relay performance web tool for the Mars network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1