使用旋转的手写数字识别

A. Ignat, Bogdan Aciobanitei
{"title":"使用旋转的手写数字识别","authors":"A. Ignat, Bogdan Aciobanitei","doi":"10.1109/SYNASC.2016.054","DOIUrl":null,"url":null,"abstract":"Handwritten digit recognition is a subproblem of the well-known optical recognition topic. In this work, we propose a new feature extraction method for offline handwritten digit recognition. The method combines basic image processing techniques such as rotations and edge filtering in order to extract digit characteristics. As classifiers, we use k-NN (k Nearest Neighbor) and Support Vector Machines (SVM). The methods are tested on a commonly employed database of handwritten digits' images, MNIST (Mixed National Institute of Standards and Technology) on which the classification rate is over 99%.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Handwritten Digit Recognition Using Rotations\",\"authors\":\"A. Ignat, Bogdan Aciobanitei\",\"doi\":\"10.1109/SYNASC.2016.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwritten digit recognition is a subproblem of the well-known optical recognition topic. In this work, we propose a new feature extraction method for offline handwritten digit recognition. The method combines basic image processing techniques such as rotations and edge filtering in order to extract digit characteristics. As classifiers, we use k-NN (k Nearest Neighbor) and Support Vector Machines (SVM). The methods are tested on a commonly employed database of handwritten digits' images, MNIST (Mixed National Institute of Standards and Technology) on which the classification rate is over 99%.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

手写体数字识别是众所周知的光学识别领域的一个子问题。在这项工作中,我们提出了一种新的离线手写数字识别特征提取方法。该方法结合了旋转和边缘滤波等基本图像处理技术来提取数字特征。作为分类器,我们使用k- nn (k最近邻)和支持向量机(SVM)。这些方法在一个常用的手写数字图像数据库MNIST(混合国家标准与技术研究所)上进行了测试,其分类率超过99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Handwritten Digit Recognition Using Rotations
Handwritten digit recognition is a subproblem of the well-known optical recognition topic. In this work, we propose a new feature extraction method for offline handwritten digit recognition. The method combines basic image processing techniques such as rotations and edge filtering in order to extract digit characteristics. As classifiers, we use k-NN (k Nearest Neighbor) and Support Vector Machines (SVM). The methods are tested on a commonly employed database of handwritten digits' images, MNIST (Mixed National Institute of Standards and Technology) on which the classification rate is over 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1