鲁棒稀疏编码的全正则化路径及其在人脸识别中的应用

J. Chorowski, J. Zurada
{"title":"鲁棒稀疏编码的全正则化路径及其在人脸识别中的应用","authors":"J. Chorowski, J. Zurada","doi":"10.1109/ICMLA.2012.66","DOIUrl":null,"url":null,"abstract":"The problem of robust sparse coding is considered. It is defined as finding linear reconstruction coefficients that minimize the sum of absolute values of the errors, instead of the more typically used sum of squares of the errors. This change lowers the influence of large errors and enhances the robustness of the solution to noise in the data. Sparsity is enforced by limiting the sum of absolute values of the coefficients. We present an algorithm that finds the path traced by the coefficients when the sparsity-inducing constraint is varied. The optimality conditions are derived and included in the algorithm to speed its execution. The proposed method is validated on the problem of robust face recognition.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Obtaining Full Regularization Paths for Robust Sparse Coding with Applications to Face Recognition\",\"authors\":\"J. Chorowski, J. Zurada\",\"doi\":\"10.1109/ICMLA.2012.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of robust sparse coding is considered. It is defined as finding linear reconstruction coefficients that minimize the sum of absolute values of the errors, instead of the more typically used sum of squares of the errors. This change lowers the influence of large errors and enhances the robustness of the solution to noise in the data. Sparsity is enforced by limiting the sum of absolute values of the coefficients. We present an algorithm that finds the path traced by the coefficients when the sparsity-inducing constraint is varied. The optimality conditions are derived and included in the algorithm to speed its execution. The proposed method is validated on the problem of robust face recognition.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了鲁棒稀疏编码问题。它被定义为寻找线性重建系数,使误差绝对值的总和最小化,而不是更典型地使用误差的平方和。这种变化降低了大误差的影响,增强了解决方案对数据噪声的鲁棒性。稀疏性是通过限制系数绝对值的总和来实现的。我们提出了一种算法,当稀疏性诱导约束发生变化时,找到由系数跟踪的路径。导出了最优性条件,并将其纳入算法中,以加快算法的执行速度。在鲁棒人脸识别问题上对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Obtaining Full Regularization Paths for Robust Sparse Coding with Applications to Face Recognition
The problem of robust sparse coding is considered. It is defined as finding linear reconstruction coefficients that minimize the sum of absolute values of the errors, instead of the more typically used sum of squares of the errors. This change lowers the influence of large errors and enhances the robustness of the solution to noise in the data. Sparsity is enforced by limiting the sum of absolute values of the coefficients. We present an algorithm that finds the path traced by the coefficients when the sparsity-inducing constraint is varied. The optimality conditions are derived and included in the algorithm to speed its execution. The proposed method is validated on the problem of robust face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1