基于去噪自编码器的二维凝胶电泳图像自动增强

A. Ahmed, Wessam H. El-Behaidy, A. Youssif
{"title":"基于去噪自编码器的二维凝胶电泳图像自动增强","authors":"A. Ahmed, Wessam H. El-Behaidy, A. Youssif","doi":"10.1109/ICCES48960.2019.9068175","DOIUrl":null,"url":null,"abstract":"Image denoising is an important preprocessing step in two-dimensional gel electrophoresis (2-DGE) that strongly affect spot detection or pixel-based methods. Denoising autoen-coders (DAE) is a new approach in deep learning used in image denoising that has a challenging performance. In this study, DAE technique is applied on 2-DGE images motivated by its ability to learn a robust representation to partially corrupted input. DAE is applied on over than 300 real gels got from LEeB 2-D PAGE database. To validate the efficiency of this technique three indicators are used; Signal-to-noise ratio (SNR), False discovery rate (FDR) and spot efficiency. The average results before denoising are 0.6332 for SNR and 71.05 for spot efficiency. Whereas, the average results after DAE are 61.3317 for SNR, 99.9944 for FDR and 88.4 for spot efficiency. Moreover, DAE outperforms the denoising wavelet by 1.75 %.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Enhancement of Two-Dimensional Gel electrophoresis images using Denoising Autoencoder\",\"authors\":\"A. Ahmed, Wessam H. El-Behaidy, A. Youssif\",\"doi\":\"10.1109/ICCES48960.2019.9068175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image denoising is an important preprocessing step in two-dimensional gel electrophoresis (2-DGE) that strongly affect spot detection or pixel-based methods. Denoising autoen-coders (DAE) is a new approach in deep learning used in image denoising that has a challenging performance. In this study, DAE technique is applied on 2-DGE images motivated by its ability to learn a robust representation to partially corrupted input. DAE is applied on over than 300 real gels got from LEeB 2-D PAGE database. To validate the efficiency of this technique three indicators are used; Signal-to-noise ratio (SNR), False discovery rate (FDR) and spot efficiency. The average results before denoising are 0.6332 for SNR and 71.05 for spot efficiency. Whereas, the average results after DAE are 61.3317 for SNR, 99.9944 for FDR and 88.4 for spot efficiency. Moreover, DAE outperforms the denoising wavelet by 1.75 %.\",\"PeriodicalId\":136643,\"journal\":{\"name\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES48960.2019.9068175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像去噪是二维凝胶电泳(2-DGE)中一个重要的预处理步骤,它对斑点检测或基于像素的方法有很大的影响。自动编码去噪(DAE)是深度学习中用于图像去噪的一种新方法,其性能具有挑战性。在本研究中,DAE技术被应用于2-DGE图像,其动机是它能够学习部分损坏输入的鲁棒表示。DAE应用于从LEeB 2-D PAGE数据库中获得的300多种真实凝胶。为了验证该技术的效率,使用了三个指标;信噪比(SNR),错误发现率(FDR)和点效率。去噪前信噪比均值为0.6332,点效率均值为71.05。而DAE后的平均结果信噪比为61.3317,FDR为99.9944,spot efficiency为88.4。此外,DAE的降噪效果比小波降噪效果好1.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Enhancement of Two-Dimensional Gel electrophoresis images using Denoising Autoencoder
Image denoising is an important preprocessing step in two-dimensional gel electrophoresis (2-DGE) that strongly affect spot detection or pixel-based methods. Denoising autoen-coders (DAE) is a new approach in deep learning used in image denoising that has a challenging performance. In this study, DAE technique is applied on 2-DGE images motivated by its ability to learn a robust representation to partially corrupted input. DAE is applied on over than 300 real gels got from LEeB 2-D PAGE database. To validate the efficiency of this technique three indicators are used; Signal-to-noise ratio (SNR), False discovery rate (FDR) and spot efficiency. The average results before denoising are 0.6332 for SNR and 71.05 for spot efficiency. Whereas, the average results after DAE are 61.3317 for SNR, 99.9944 for FDR and 88.4 for spot efficiency. Moreover, DAE outperforms the denoising wavelet by 1.75 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social Networking Sites (SNS) and Digital Communication Across Nations Improving Golay Code Using Hashing Technique Alzheimer's Disease Integrated Ontology (ADIO) Session PC: Parallel and Cloud Computing Multipath Traffic Engineering for Software Defined Networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1