非均匀模型预测控制水平离散化在城市卡车节能驾驶中的应用

Michael Henzler, M. Buchholz, K. Dietmayer
{"title":"非均匀模型预测控制水平离散化在城市卡车节能驾驶中的应用","authors":"Michael Henzler, M. Buchholz, K. Dietmayer","doi":"10.1109/ITSC.2015.78","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach on Model Predictive Control (MPC) using an inhomogeneously discretized preview horizon for the application of urban energy efficient driving. One solution for model predictive energy efficient driving is a direct solution of the underlying speed profile optimization problem using Quadratic Programming (QP), which allows computationally efficient and robust results. Our inhomogeneous horizon discretization allows to have a finer discretization of the typically important near future and a wider discretization of the less decisive far range of an MPC, while keeping a long preview horizon and at the same time limit the number of supporting points, hence limit the problem dimension, computational complexity, and proportional execution time. In extensive simulations of a real-world urban driving scenario, we demonstrate a significantly improved control performance in terms of fuel consumption, trip time, or constraint violation for the same computational complexity.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inhomogeneous Model Predictive Control Horizon Discretization for an Urban Truck Energy Efficient Driving Application\",\"authors\":\"Michael Henzler, M. Buchholz, K. Dietmayer\",\"doi\":\"10.1109/ITSC.2015.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach on Model Predictive Control (MPC) using an inhomogeneously discretized preview horizon for the application of urban energy efficient driving. One solution for model predictive energy efficient driving is a direct solution of the underlying speed profile optimization problem using Quadratic Programming (QP), which allows computationally efficient and robust results. Our inhomogeneous horizon discretization allows to have a finer discretization of the typically important near future and a wider discretization of the less decisive far range of an MPC, while keeping a long preview horizon and at the same time limit the number of supporting points, hence limit the problem dimension, computational complexity, and proportional execution time. In extensive simulations of a real-world urban driving scenario, we demonstrate a significantly improved control performance in terms of fuel consumption, trip time, or constraint violation for the same computational complexity.\",\"PeriodicalId\":124818,\"journal\":{\"name\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2015.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对城市节能驾驶的实际应用,提出了一种基于非均匀离散化的模型预测控制(MPC)方法。模型预测节能驾驶的一种解决方案是使用二次规划(QP)直接解决潜在的速度剖面优化问题,从而实现计算效率和鲁棒性。我们的非均匀水平离散化允许对通常重要的近期进行更精细的离散化,并对MPC的不太决定性的远范围进行更广泛的离散化,同时保持较长的预览水平,同时限制支撑点的数量,从而限制问题维度、计算复杂性和比例执行时间。在对真实城市驾驶场景的广泛模拟中,我们证明了在相同的计算复杂度下,在油耗、行程时间或约束违反方面的控制性能显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inhomogeneous Model Predictive Control Horizon Discretization for an Urban Truck Energy Efficient Driving Application
This paper presents a novel approach on Model Predictive Control (MPC) using an inhomogeneously discretized preview horizon for the application of urban energy efficient driving. One solution for model predictive energy efficient driving is a direct solution of the underlying speed profile optimization problem using Quadratic Programming (QP), which allows computationally efficient and robust results. Our inhomogeneous horizon discretization allows to have a finer discretization of the typically important near future and a wider discretization of the less decisive far range of an MPC, while keeping a long preview horizon and at the same time limit the number of supporting points, hence limit the problem dimension, computational complexity, and proportional execution time. In extensive simulations of a real-world urban driving scenario, we demonstrate a significantly improved control performance in terms of fuel consumption, trip time, or constraint violation for the same computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Area Traffic Prediction Using High Definition Maps and LiDAR for Safe Driving Assist ZEM 2 All Project (Zero Emission Mobility to All) Economic Analysis Based on the Interrelationships of the OLEV System Components Intelligent Driver Monitoring Based on Physiological Sensor Signals: Application Using Camera On Identifying Dynamic Intersections in Large Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1