{"title":"非均匀模型预测控制水平离散化在城市卡车节能驾驶中的应用","authors":"Michael Henzler, M. Buchholz, K. Dietmayer","doi":"10.1109/ITSC.2015.78","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach on Model Predictive Control (MPC) using an inhomogeneously discretized preview horizon for the application of urban energy efficient driving. One solution for model predictive energy efficient driving is a direct solution of the underlying speed profile optimization problem using Quadratic Programming (QP), which allows computationally efficient and robust results. Our inhomogeneous horizon discretization allows to have a finer discretization of the typically important near future and a wider discretization of the less decisive far range of an MPC, while keeping a long preview horizon and at the same time limit the number of supporting points, hence limit the problem dimension, computational complexity, and proportional execution time. In extensive simulations of a real-world urban driving scenario, we demonstrate a significantly improved control performance in terms of fuel consumption, trip time, or constraint violation for the same computational complexity.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inhomogeneous Model Predictive Control Horizon Discretization for an Urban Truck Energy Efficient Driving Application\",\"authors\":\"Michael Henzler, M. Buchholz, K. Dietmayer\",\"doi\":\"10.1109/ITSC.2015.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach on Model Predictive Control (MPC) using an inhomogeneously discretized preview horizon for the application of urban energy efficient driving. One solution for model predictive energy efficient driving is a direct solution of the underlying speed profile optimization problem using Quadratic Programming (QP), which allows computationally efficient and robust results. Our inhomogeneous horizon discretization allows to have a finer discretization of the typically important near future and a wider discretization of the less decisive far range of an MPC, while keeping a long preview horizon and at the same time limit the number of supporting points, hence limit the problem dimension, computational complexity, and proportional execution time. In extensive simulations of a real-world urban driving scenario, we demonstrate a significantly improved control performance in terms of fuel consumption, trip time, or constraint violation for the same computational complexity.\",\"PeriodicalId\":124818,\"journal\":{\"name\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2015.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhomogeneous Model Predictive Control Horizon Discretization for an Urban Truck Energy Efficient Driving Application
This paper presents a novel approach on Model Predictive Control (MPC) using an inhomogeneously discretized preview horizon for the application of urban energy efficient driving. One solution for model predictive energy efficient driving is a direct solution of the underlying speed profile optimization problem using Quadratic Programming (QP), which allows computationally efficient and robust results. Our inhomogeneous horizon discretization allows to have a finer discretization of the typically important near future and a wider discretization of the less decisive far range of an MPC, while keeping a long preview horizon and at the same time limit the number of supporting points, hence limit the problem dimension, computational complexity, and proportional execution time. In extensive simulations of a real-world urban driving scenario, we demonstrate a significantly improved control performance in terms of fuel consumption, trip time, or constraint violation for the same computational complexity.