{"title":"不同温度下太赫兹超导隧道结的磁效应","authors":"Chengjiang Zhang, Q. Yao, S. Shi","doi":"10.1117/12.900323","DOIUrl":null,"url":null,"abstract":"We have investigated the effect of a moderately strong magnetic field (generated by superconducting coil, up to 380Gauss, 6 quantum fluxes within a single junction; generated by one piece of permanent magnet; generated by two pieces of permanent magnets respectively) on Nb superconducting tunnel junctions at different temperatures. Both experimental and numerical results show that the superconducting tunnel junction DC Josephson current can be significantly reduced by a magnetic field. A relatively strong magnet field may suppress the gap voltage as well as the sharp nonlinearity at the gap. We also investigated the leakage current and DC Josephson current of the Nb SIS junction at different temperatures.","PeriodicalId":355017,"journal":{"name":"Photoelectronic Detection and Imaging","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic effects on THz superconducting tunnel junctions at different temperatures\",\"authors\":\"Chengjiang Zhang, Q. Yao, S. Shi\",\"doi\":\"10.1117/12.900323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the effect of a moderately strong magnetic field (generated by superconducting coil, up to 380Gauss, 6 quantum fluxes within a single junction; generated by one piece of permanent magnet; generated by two pieces of permanent magnets respectively) on Nb superconducting tunnel junctions at different temperatures. Both experimental and numerical results show that the superconducting tunnel junction DC Josephson current can be significantly reduced by a magnetic field. A relatively strong magnet field may suppress the gap voltage as well as the sharp nonlinearity at the gap. We also investigated the leakage current and DC Josephson current of the Nb SIS junction at different temperatures.\",\"PeriodicalId\":355017,\"journal\":{\"name\":\"Photoelectronic Detection and Imaging\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoelectronic Detection and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.900323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoelectronic Detection and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.900323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic effects on THz superconducting tunnel junctions at different temperatures
We have investigated the effect of a moderately strong magnetic field (generated by superconducting coil, up to 380Gauss, 6 quantum fluxes within a single junction; generated by one piece of permanent magnet; generated by two pieces of permanent magnets respectively) on Nb superconducting tunnel junctions at different temperatures. Both experimental and numerical results show that the superconducting tunnel junction DC Josephson current can be significantly reduced by a magnetic field. A relatively strong magnet field may suppress the gap voltage as well as the sharp nonlinearity at the gap. We also investigated the leakage current and DC Josephson current of the Nb SIS junction at different temperatures.