使用Pentaho数据集成的数据清理处理:重复数据删除案例研究

D. Setyawan, T. F. Kusumasari, E. N. Alam
{"title":"使用Pentaho数据集成的数据清理处理:重复数据删除案例研究","authors":"D. Setyawan, T. F. Kusumasari, E. N. Alam","doi":"10.1109/ICST50505.2020.9732824","DOIUrl":null,"url":null,"abstract":"Now is the era of data. Every field has data and uses it to progress towards an innovative future. But often, the amount of data that is not balanced with good data quality ranges from differences in data formats, duplicate data, and errors in the data input process. One technique for maintaining and improving data quality is the data cleansing technique. This paper aims to propose data cleansing processing in the case of data deduplication cases using Pentaho Data Integration tools. Pentaho Data Integration done in 4 phases: Analyze, Mapping function, Design and setting, and Evaluation and test. PDI results are tested and compared with the Talend Open Studio tool. The dataset tested was data on factory names at a company in Indonesia tasked with overseeing the distribution of medicines and food. This research is expected to meet the needs of companies, especially in the field of data quality management, especially cases of data duplication and to find out the comparative results of the tools used.","PeriodicalId":125807,"journal":{"name":"2020 6th International Conference on Science and Technology (ICST)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Cleansing Processing using Pentaho Data Integration: Case Study Data Deduplication\",\"authors\":\"D. Setyawan, T. F. Kusumasari, E. N. Alam\",\"doi\":\"10.1109/ICST50505.2020.9732824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Now is the era of data. Every field has data and uses it to progress towards an innovative future. But often, the amount of data that is not balanced with good data quality ranges from differences in data formats, duplicate data, and errors in the data input process. One technique for maintaining and improving data quality is the data cleansing technique. This paper aims to propose data cleansing processing in the case of data deduplication cases using Pentaho Data Integration tools. Pentaho Data Integration done in 4 phases: Analyze, Mapping function, Design and setting, and Evaluation and test. PDI results are tested and compared with the Talend Open Studio tool. The dataset tested was data on factory names at a company in Indonesia tasked with overseeing the distribution of medicines and food. This research is expected to meet the needs of companies, especially in the field of data quality management, especially cases of data duplication and to find out the comparative results of the tools used.\",\"PeriodicalId\":125807,\"journal\":{\"name\":\"2020 6th International Conference on Science and Technology (ICST)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Science and Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICST50505.2020.9732824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Science and Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST50505.2020.9732824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现在是数据时代。每个领域都有数据,并利用它向创新的未来迈进。但是,通常情况下,数据量与良好的数据质量不平衡的范围包括数据格式的差异、重复数据和数据输入过程中的错误。维护和改进数据质量的一种技术是数据清理技术。本文旨在提出使用Pentaho数据集成工具在重复数据删除情况下的数据清理处理。Pentaho数据集成分为4个阶段:分析,映射功能,设计和设置,评估和测试。对PDI结果进行了测试,并与Talend Open Studio工具进行了比较。测试的数据集是印度尼西亚一家负责监督药品和食品分销的公司的工厂名称数据。本研究旨在满足公司的需求,特别是在数据质量管理领域,特别是在数据重复的情况下,并找出所使用的工具的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Cleansing Processing using Pentaho Data Integration: Case Study Data Deduplication
Now is the era of data. Every field has data and uses it to progress towards an innovative future. But often, the amount of data that is not balanced with good data quality ranges from differences in data formats, duplicate data, and errors in the data input process. One technique for maintaining and improving data quality is the data cleansing technique. This paper aims to propose data cleansing processing in the case of data deduplication cases using Pentaho Data Integration tools. Pentaho Data Integration done in 4 phases: Analyze, Mapping function, Design and setting, and Evaluation and test. PDI results are tested and compared with the Talend Open Studio tool. The dataset tested was data on factory names at a company in Indonesia tasked with overseeing the distribution of medicines and food. This research is expected to meet the needs of companies, especially in the field of data quality management, especially cases of data duplication and to find out the comparative results of the tools used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review on Battery Energy Storage System for Power System with Grid Connected Wind Farm Identification of Reef Characteristics Using Remote Sensing Technology in Ayau Islands, Indonesia Cardinality Single Column Analysis for Data Profiling using an Open Source Platform Techno-Economic Analysis of Implementation IEEE 802.11ah Standard for Smart Meter Application in Bandung Area Performance Analysis of On-Off Keying Modulation on Underwater Visible Light Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1