信息不确定性下车辆雾计算任务卸载:一种匹配学习方法

Haijun Liao, Zhenyu Zhou, Xiongwen Zhao, B. Ai, S. Mumtaz
{"title":"信息不确定性下车辆雾计算任务卸载:一种匹配学习方法","authors":"Haijun Liao, Zhenyu Zhou, Xiongwen Zhao, B. Ai, S. Mumtaz","doi":"10.1109/IWCMC.2019.8766579","DOIUrl":null,"url":null,"abstract":"Vehicular fog computing (VFC) has emerged as a cost-efficient solution for task processing in vehicular networks. However, how to realize stable and reliable task offloading under information uncertainty remains a critical challenge. In this paper, we propose a matching-learning-based task offloading algorithm to address this challenge. First, a low-complexity and stable task offloading mechanism is proposed to minimize the total network delay based on the pricing-based matching. Second, we extend the work to the scenario of information uncertainty, and develop a matching-learning-based task offloading algorithm by combining matching theory and upper confidence bound (UCB) algorithm. Simulation results demonstrate that the proposed algorithm can achieve bounded deviation from the optimal performance without the global information.","PeriodicalId":363800,"journal":{"name":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Task Offloading for Vehicular Fog Computing under Information Uncertainty: A Matching-Learning Approach\",\"authors\":\"Haijun Liao, Zhenyu Zhou, Xiongwen Zhao, B. Ai, S. Mumtaz\",\"doi\":\"10.1109/IWCMC.2019.8766579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular fog computing (VFC) has emerged as a cost-efficient solution for task processing in vehicular networks. However, how to realize stable and reliable task offloading under information uncertainty remains a critical challenge. In this paper, we propose a matching-learning-based task offloading algorithm to address this challenge. First, a low-complexity and stable task offloading mechanism is proposed to minimize the total network delay based on the pricing-based matching. Second, we extend the work to the scenario of information uncertainty, and develop a matching-learning-based task offloading algorithm by combining matching theory and upper confidence bound (UCB) algorithm. Simulation results demonstrate that the proposed algorithm can achieve bounded deviation from the optimal performance without the global information.\",\"PeriodicalId\":363800,\"journal\":{\"name\":\"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCMC.2019.8766579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCMC.2019.8766579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

车载雾计算(VFC)作为一种经济高效的车载网络任务处理解决方案应运而生。然而,如何在信息不确定的情况下实现稳定可靠的任务卸载仍然是一个严峻的挑战。在本文中,我们提出了一种基于匹配学习的任务卸载算法来解决这个问题。首先,提出了一种基于定价匹配的低复杂度、稳定的任务卸载机制,使网络总时延最小化;其次,将工作扩展到信息不确定场景,将匹配理论与上置信度界(UCB)算法相结合,提出了一种基于匹配学习的任务卸载算法。仿真结果表明,在没有全局信息的情况下,该算法可以实现与最优性能的有界偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task Offloading for Vehicular Fog Computing under Information Uncertainty: A Matching-Learning Approach
Vehicular fog computing (VFC) has emerged as a cost-efficient solution for task processing in vehicular networks. However, how to realize stable and reliable task offloading under information uncertainty remains a critical challenge. In this paper, we propose a matching-learning-based task offloading algorithm to address this challenge. First, a low-complexity and stable task offloading mechanism is proposed to minimize the total network delay based on the pricing-based matching. Second, we extend the work to the scenario of information uncertainty, and develop a matching-learning-based task offloading algorithm by combining matching theory and upper confidence bound (UCB) algorithm. Simulation results demonstrate that the proposed algorithm can achieve bounded deviation from the optimal performance without the global information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Method to Physical Layer Security of an Amplify-and-Forward Spectrum Sensing in Cognitive Radio Networks: Secondary User to Relay Experimental Performance Evaluation of TCP Over an Integrated Satellite-Terrestrial Network Environment Drone Disrupted Denial of Service Attack (3DOS): Towards an Incident Response and Forensic Analysis of Remotely Piloted Aerial Systems (RPASs) Mobility Traffic Model Based on Combination of Multiple Transportation Forms in the Smart City Exploiting Energy Efficient Routing protocols for Void Hole Alleviation in IoT enabled Underwater WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1