基于特征的数据驱动控制器设计和调优方法

Jian-xin Xu, Dongxu Ji
{"title":"基于特征的数据驱动控制器设计和调优方法","authors":"Jian-xin Xu, Dongxu Ji","doi":"10.1109/ICCIS.2010.5518560","DOIUrl":null,"url":null,"abstract":"Traditionally controller tuning is model based. In many practical applications, however, the process model cannot be obtained and model-free tuning is imperative. In industrial control the huge amount of data is available, but we lack effective controller tuning schemes that are data driven instead of model driven. To address this issue, in this paper we first introduce the concept of feature space that can capture the characteristics of a control process, either in the time domain, frequency domain, or others. (data space to feature space, dim reduction) Next we introduce the control basis function space and control parameter space. The features and parameters form a mapping relationship. The controller tuning process can thus be formulated into the inversion of the mapping that yields appropriate control parameters and minimizes the mismatching between reference features and actual features. When the inversion is not analytically solvable, the iterative learning tuning method can be used.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A feature-based data-driven approach for controller design and tuning\",\"authors\":\"Jian-xin Xu, Dongxu Ji\",\"doi\":\"10.1109/ICCIS.2010.5518560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditionally controller tuning is model based. In many practical applications, however, the process model cannot be obtained and model-free tuning is imperative. In industrial control the huge amount of data is available, but we lack effective controller tuning schemes that are data driven instead of model driven. To address this issue, in this paper we first introduce the concept of feature space that can capture the characteristics of a control process, either in the time domain, frequency domain, or others. (data space to feature space, dim reduction) Next we introduce the control basis function space and control parameter space. The features and parameters form a mapping relationship. The controller tuning process can thus be formulated into the inversion of the mapping that yields appropriate control parameters and minimizes the mismatching between reference features and actual features. When the inversion is not analytically solvable, the iterative learning tuning method can be used.\",\"PeriodicalId\":445473,\"journal\":{\"name\":\"2010 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2010.5518560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的控制器调优是基于模型的。然而,在许多实际应用中,无法获得流程模型,因此必须进行无模型调优。在工业控制中有大量的数据可用,但我们缺乏有效的数据驱动而不是模型驱动的控制器调优方案。为了解决这个问题,在本文中,我们首先引入了特征空间的概念,它可以捕获控制过程的特征,无论是在时域,频域还是其他领域。(数据空间转化为特征空间,模糊约简)接下来介绍了控制基函数空间和控制参数空间。特征和参数形成映射关系。因此,控制器调谐过程可以被表述为映射的反演,从而产生适当的控制参数并最小化参考特征与实际特征之间的不匹配。当反演不可解析解时,可采用迭代学习调优方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A feature-based data-driven approach for controller design and tuning
Traditionally controller tuning is model based. In many practical applications, however, the process model cannot be obtained and model-free tuning is imperative. In industrial control the huge amount of data is available, but we lack effective controller tuning schemes that are data driven instead of model driven. To address this issue, in this paper we first introduce the concept of feature space that can capture the characteristics of a control process, either in the time domain, frequency domain, or others. (data space to feature space, dim reduction) Next we introduce the control basis function space and control parameter space. The features and parameters form a mapping relationship. The controller tuning process can thus be formulated into the inversion of the mapping that yields appropriate control parameters and minimizes the mismatching between reference features and actual features. When the inversion is not analytically solvable, the iterative learning tuning method can be used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic shift mechanism of continuous attractors in a class of recurrent neural networks Design space exploration of a 2-D DWT system architecture Cascaded control of 3D path following for an unmanned helicopter A load transfer scheme of radial distribution feeders considering distributed generation FDI of disturbed nonlinear systems: A nonlinear UIO approach with SOS techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1