全局路由问题的基于拥塞的Steiner树构造

L. Behjat, A. Vannelli
{"title":"全局路由问题的基于拥塞的Steiner树构造","authors":"L. Behjat, A. Vannelli","doi":"10.1109/IWSOC.2003.1213000","DOIUrl":null,"url":null,"abstract":"Global routing is an essential part of physical design, and has been traditionally formulated to minimize either an estimate of the total wirelength or the channel capacity of a circuit ignoring important issues such as congestion and number of bends. In this paper, a mathematical programming model that combines the wirelength minimization model and the channel capacity minimization model is presented. The combined model is also capable of incorporating different aspects of the global routing problem, such as via-count and congestion in two stages of the global routing problem: route construction and problem formulation. In addition, numerical enhancements have been proposed to increase the speed of the global routing formulation. Experiments on different benchmarks show that the new model builds a flexible and powerful technique that enhances the global routing solution compared to other mathematical programming techniques developed for global routing.","PeriodicalId":259178,"journal":{"name":"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Steiner tree construction based on congestion for the global routing problem\",\"authors\":\"L. Behjat, A. Vannelli\",\"doi\":\"10.1109/IWSOC.2003.1213000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global routing is an essential part of physical design, and has been traditionally formulated to minimize either an estimate of the total wirelength or the channel capacity of a circuit ignoring important issues such as congestion and number of bends. In this paper, a mathematical programming model that combines the wirelength minimization model and the channel capacity minimization model is presented. The combined model is also capable of incorporating different aspects of the global routing problem, such as via-count and congestion in two stages of the global routing problem: route construction and problem formulation. In addition, numerical enhancements have been proposed to increase the speed of the global routing formulation. Experiments on different benchmarks show that the new model builds a flexible and powerful technique that enhances the global routing solution compared to other mathematical programming techniques developed for global routing.\",\"PeriodicalId\":259178,\"journal\":{\"name\":\"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSOC.2003.1213000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSOC.2003.1213000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

全局路由是物理设计的重要组成部分,传统上,它的制定是为了最小化电路的总长度或信道容量的估计,而忽略了诸如拥塞和弯曲数等重要问题。本文提出了一种将信道容量最小化模型与信道长度最小化模型相结合的数学规划模型。该组合模型还能够在全局路由问题的两个阶段:路线构建和问题制定中纳入全局路由问题的不同方面,例如通过计数和拥塞。此外,还提出了数值增强以提高全局路由公式的速度。在不同基准测试上的实验表明,该模型建立了一种灵活而强大的技术,与其他针对全局路由开发的数学规划技术相比,该模型增强了全局路由解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steiner tree construction based on congestion for the global routing problem
Global routing is an essential part of physical design, and has been traditionally formulated to minimize either an estimate of the total wirelength or the channel capacity of a circuit ignoring important issues such as congestion and number of bends. In this paper, a mathematical programming model that combines the wirelength minimization model and the channel capacity minimization model is presented. The combined model is also capable of incorporating different aspects of the global routing problem, such as via-count and congestion in two stages of the global routing problem: route construction and problem formulation. In addition, numerical enhancements have been proposed to increase the speed of the global routing formulation. Experiments on different benchmarks show that the new model builds a flexible and powerful technique that enhances the global routing solution compared to other mathematical programming techniques developed for global routing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and implementation of a surface electromyogram system for sport field application A system-on-a-programmable-chip for real-time control of massively parallel arrays of biosensors and actuators Incorporating pattern prediction technique for energy efficient filter cache design The design of a self-maintained memory module for real-time systems Transformations of signed-binary number representations for efficient VLSI arithmetic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1