{"title":"作为MIMO SDR模块单元的2.45 GHz发射器和接收器的设计与实现","authors":"J. Verhaevert, P. Van Torre","doi":"10.1109/LAPC.2015.7366044","DOIUrl":null,"url":null,"abstract":"This paper describes a low-cost transmitting and receiving system for wireless communication. In a first part, the design and realization of a transmitter for modulated data at 2.45 GHz carrier frequency and with frequency, amplitude and phase modulation is handled. A second part explains the design and realization of a receiving module, which filters and downconverts the signals to an intermediate frequency. The postprocessing section describes the use of a DVB-T module together with open-source software, SDR#, for the final downconversion, as well as for the demodulation and the detection of the received signals in order to reproduce the originally transmitted data. Combining all components results in a low-cost and flexible software defined radio system.","PeriodicalId":339610,"journal":{"name":"2015 Loughborough Antennas & Propagation Conference (LAPC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and realization of a 2.45 GHz transmitter and receiver as a modular unit for a MIMO SDR\",\"authors\":\"J. Verhaevert, P. Van Torre\",\"doi\":\"10.1109/LAPC.2015.7366044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a low-cost transmitting and receiving system for wireless communication. In a first part, the design and realization of a transmitter for modulated data at 2.45 GHz carrier frequency and with frequency, amplitude and phase modulation is handled. A second part explains the design and realization of a receiving module, which filters and downconverts the signals to an intermediate frequency. The postprocessing section describes the use of a DVB-T module together with open-source software, SDR#, for the final downconversion, as well as for the demodulation and the detection of the received signals in order to reproduce the originally transmitted data. Combining all components results in a low-cost and flexible software defined radio system.\",\"PeriodicalId\":339610,\"journal\":{\"name\":\"2015 Loughborough Antennas & Propagation Conference (LAPC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Loughborough Antennas & Propagation Conference (LAPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAPC.2015.7366044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Loughborough Antennas & Propagation Conference (LAPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAPC.2015.7366044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and realization of a 2.45 GHz transmitter and receiver as a modular unit for a MIMO SDR
This paper describes a low-cost transmitting and receiving system for wireless communication. In a first part, the design and realization of a transmitter for modulated data at 2.45 GHz carrier frequency and with frequency, amplitude and phase modulation is handled. A second part explains the design and realization of a receiving module, which filters and downconverts the signals to an intermediate frequency. The postprocessing section describes the use of a DVB-T module together with open-source software, SDR#, for the final downconversion, as well as for the demodulation and the detection of the received signals in order to reproduce the originally transmitted data. Combining all components results in a low-cost and flexible software defined radio system.