最短距离全对的有效维护

S. Greco, Cristian Molinaro, Chiara Pulice
{"title":"最短距离全对的有效维护","authors":"S. Greco, Cristian Molinaro, Chiara Pulice","doi":"10.1145/2949689.2949713","DOIUrl":null,"url":null,"abstract":"Computing shortest distances is a central task in many graph applications. Since it is impractical to recompute shortest distances from scratch every time the graph changes, many algorithms have been proposed to incrementally maintain shortest distances after edge deletions or insertions. In this paper, we address the problem of maintaining all-pairs shortest distances in dynamic graphs and propose novel efficient incremental algorithms, working both in main memory and on disk. We prove their correctness and provide complexity analyses. Experimental results on real-world datasets show that current main-memory algorithms become soon impractical, disk-based ones are needed for larger graphs, and our approach significantly outperforms state-of-the-art algorithms.","PeriodicalId":254803,"journal":{"name":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient Maintenance of All-Pairs Shortest Distances\",\"authors\":\"S. Greco, Cristian Molinaro, Chiara Pulice\",\"doi\":\"10.1145/2949689.2949713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing shortest distances is a central task in many graph applications. Since it is impractical to recompute shortest distances from scratch every time the graph changes, many algorithms have been proposed to incrementally maintain shortest distances after edge deletions or insertions. In this paper, we address the problem of maintaining all-pairs shortest distances in dynamic graphs and propose novel efficient incremental algorithms, working both in main memory and on disk. We prove their correctness and provide complexity analyses. Experimental results on real-world datasets show that current main-memory algorithms become soon impractical, disk-based ones are needed for larger graphs, and our approach significantly outperforms state-of-the-art algorithms.\",\"PeriodicalId\":254803,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Scientific and Statistical Database Management\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2949689.2949713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2949689.2949713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

计算最短距离是许多图形应用程序的中心任务。由于每次图改变时从头开始重新计算最短距离是不切实际的,因此已经提出了许多算法来在删除或插入边缘后增量地保持最短距离。在本文中,我们解决了在动态图中保持全对最短距离的问题,并提出了一种新的高效增量算法,可以同时在主存和磁盘上工作。我们证明了它们的正确性,并提供了复杂性分析。在真实数据集上的实验结果表明,当前的主内存算法很快就会变得不切实际,更大的图形需要基于磁盘的算法,而我们的方法明显优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Maintenance of All-Pairs Shortest Distances
Computing shortest distances is a central task in many graph applications. Since it is impractical to recompute shortest distances from scratch every time the graph changes, many algorithms have been proposed to incrementally maintain shortest distances after edge deletions or insertions. In this paper, we address the problem of maintaining all-pairs shortest distances in dynamic graphs and propose novel efficient incremental algorithms, working both in main memory and on disk. We prove their correctness and provide complexity analyses. Experimental results on real-world datasets show that current main-memory algorithms become soon impractical, disk-based ones are needed for larger graphs, and our approach significantly outperforms state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SMS: Stable Matching Algorithm using Skylines Graph-based modelling of query sets for differential privacy Efficient Feedback Collection for Pay-as-you-go Source Selection Multi-Assignment Single Joins for Parallel Cross-Match of Astronomic Catalogs on Heterogeneous Clusters Compact and queryable representation of raster datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1