{"title":"基于结构平衡方法的用户-项目聚类顺序抽取协同过滤","authors":"Katsuhiro Honda, A. Notsu, H. Ichihashi","doi":"10.1109/FUZZY.2009.5277251","DOIUrl":null,"url":null,"abstract":"This paper considers a new approach to user-item clustering for collaborative filtering problems that achieves personalized recommendation. When user-item relations are given by an alternative process, personalized recommendation is performed by finding user-item neighborhoods (co-clusters) from a rectangular relational data matrix, in which users and items have mutually positive relations. In the proposed approach, user-item clusters are extracted one by one in a sequential manner via a structural balancing technique, used in conjunction with the sequential fuzzy cluster extraction method.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Collaborative filtering by sequential extraction of user-item clusters based on structural balancing approach\",\"authors\":\"Katsuhiro Honda, A. Notsu, H. Ichihashi\",\"doi\":\"10.1109/FUZZY.2009.5277251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a new approach to user-item clustering for collaborative filtering problems that achieves personalized recommendation. When user-item relations are given by an alternative process, personalized recommendation is performed by finding user-item neighborhoods (co-clusters) from a rectangular relational data matrix, in which users and items have mutually positive relations. In the proposed approach, user-item clusters are extracted one by one in a sequential manner via a structural balancing technique, used in conjunction with the sequential fuzzy cluster extraction method.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collaborative filtering by sequential extraction of user-item clusters based on structural balancing approach
This paper considers a new approach to user-item clustering for collaborative filtering problems that achieves personalized recommendation. When user-item relations are given by an alternative process, personalized recommendation is performed by finding user-item neighborhoods (co-clusters) from a rectangular relational data matrix, in which users and items have mutually positive relations. In the proposed approach, user-item clusters are extracted one by one in a sequential manner via a structural balancing technique, used in conjunction with the sequential fuzzy cluster extraction method.