{"title":"用于芯片上实验室应用的静电聚对二甲苯微阀","authors":"E. Yıldırım, A. Koyuncuoğlu, H. Külah","doi":"10.1109/BIYOMUT.2010.5479784","DOIUrl":null,"url":null,"abstract":"This paper presents a novel electrostatically actuated microvalve for lab-on-a-chip applications, fabricated using surface micromachining techniques. Lab-on-a-chip applications generally involve in-plane microflows. Microvalve mentioned here operates by moving a diaphragm, which is in-plane with the flow, perpendicular to the stream with the help of electrostatic forces. Operating principles and the operation of the valve are presented in the paper.","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electrostatic parylene microvalve for lab-on-a-chip applications\",\"authors\":\"E. Yıldırım, A. Koyuncuoğlu, H. Külah\",\"doi\":\"10.1109/BIYOMUT.2010.5479784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel electrostatically actuated microvalve for lab-on-a-chip applications, fabricated using surface micromachining techniques. Lab-on-a-chip applications generally involve in-plane microflows. Microvalve mentioned here operates by moving a diaphragm, which is in-plane with the flow, perpendicular to the stream with the help of electrostatic forces. Operating principles and the operation of the valve are presented in the paper.\",\"PeriodicalId\":180275,\"journal\":{\"name\":\"2010 15th National Biomedical Engineering Meeting\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th National Biomedical Engineering Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIYOMUT.2010.5479784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An electrostatic parylene microvalve for lab-on-a-chip applications
This paper presents a novel electrostatically actuated microvalve for lab-on-a-chip applications, fabricated using surface micromachining techniques. Lab-on-a-chip applications generally involve in-plane microflows. Microvalve mentioned here operates by moving a diaphragm, which is in-plane with the flow, perpendicular to the stream with the help of electrostatic forces. Operating principles and the operation of the valve are presented in the paper.